

BTECH

(SEM III) THEORY EXAMINATION 2021-22 **ELECTRONIC DEVICES AND CIRCUITS**

Time: 3 Hours

f.

Total Marks: 70

 $2 \ge 7 = 14$

 $7 \ge 3 = 21^{1}$

Printed Page: 1 of 2

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

Write the equation for diffusion current density (J) for electrons in a. semiconductors. What is the effect of Temperature (T) on the conductivity (σ) of a b. semiconductor? What is the difference between BJT and MOSFET? c. What is Pinch off voltage (Vp) in MOSFET? d. What is the Bark-hausen criterion for oscillator? e. Name the various internal capacitance for BJT. A Hartley oscillator have following parameters $L_1 = 500\mu$ H, $L_2 = 150\mu$ H and g. C = 150 pF. Find the frequency of oscillations.

SECTION B

2. Attempt any three of the following:

Draw & Explain the Silicon (Si) semiconductor energy band diagram.					
An N-type semiconductor is implanted with Boron. The donor and acceptor					
concentrations are $N_D = 10^{16}$ /cm ³ and $N_A = 4x10^{18}$ /cm ³ . Calculate the Contact					
Potential (V_o) and Depletion layer width (W) .					
(Given, $n_i = 1.5 \times 10^{10}$ /cm ³ , $C_0 = 8.85 \times 10^{-14}$ F/cm, $C_r = 11.8 C_0$)					
Derive the expression for Depletion Layer width (W) of a semiconductor PN					
Junction.					
Draw the symbols and show the directions of currents of NPN & PNP BJT, N-					
channel & P-Channel depletion & enhancement type MOSFETs.					
Draw & explain Ebers-Moll model for BJT. Mention its real-life importance.					

SECTION C

3. Attempt any one part of the following:

$7 \ge 1 = 7$

Derive the expression for minority carrier lifetime (τ) in a semiconductor (a) Derive the expression for Einstein Relation $(D/\mu = kT/q)$ for semiconductors. (b)

4. Attempt any one part of the following:

$7 \ge 1 = 7$

Explain the process of Forward and Reverse bias PN junction. Show with (a) energy band diagram that how Fermi Level changes according to biasing? A pure semiconductor is doped with donor impurities (N_D) as 1:10⁶ in Si atoms. (b) The Si material has 5×10^{22} atoms/cm³. Given that motilities $\mu_n = 1300$ cm² / v.s. $\mu_p = 500 \text{ cm}^2/\text{ v.s. Find:}$ Conductivity due to Majority Carriers (σ_n). Conductivity due to Minority Carriers (σ_p).

BTECH (SEM III) THEORY EXAMINATION 2021-22

Roll No:

ELECTRONIC DEVICES AND CIRCUITS

5. Attempt any one part of the following:

(a)	Draw the four basic feedback topologies. Compare the input and output resistance					
	among the feedback topologies.					
(b)	Explain the operation & working of anyone Optoelectronic Device such as:					
Ì.	Photodiode, Solar Cells, or LED.					

6. Attempt any one part of the following:

- Mention the conditions for oscillation. Derive the expression for the frequency of (a) oscillation in Phase shift Oscillator.
- Measurements of V_{BE} and any two terminal currents (Ic, or I_B, or I_E) on a (b) number of NPN transistors are tabulated below. For each, calculate the missing terminal current value and find α , β and I_s as indicated by the table:

Transistor	Α	B	С	D	E
V _{BE} (mV)	690	690	580	780	820
I _C (mA)	1	1		10.10	
I _B (mA)	50	Ċ	7	120	1050
I_E (mA)		1.07	0.137		75
α	0	/			
β	Q^{V}	-			
Is					
2ºV	*				~

7. Attempt any one part of the following:

 $7 \ge 1 = 7$

1.4.

(a)	Draw & explain the MOSFET Small Signal model.
(b)	Consider a MOSFET process technology for which $L_{min.} = 0.4 \mu m$, tox =
	$8nm$, $\mu_n = 450 \text{ cm}^2 / \text{v.s}$, $V_{th} = 0.7 \text{ volts}$, Find:

- Find Cox and kn I.
- For a MOSFET with W/L = 8 μ m/0.8 μ m, calculate the value of V_{GS}, II. and $V_{DS (min.)}$ needed to operate the transistor in the saturation region with a dc current $I_D = 100 \mu A$.
- For the device in (b), find the value of V_{GS} required to cause the device III. to operate as 1000 Ω resistor for very small V_{DS}.

 $7 \ge 1 = 7$

 $7 \ge 1 = 7$