Roll No: \square
BTECH
(SEM III) THEORY EXAMINATION 2021-22
ELECTRONIC DEVICES AND CIRCUITS
Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

a.	Write the equation for diffusion current density (J) for electrons in semiconductors.
b.	What is the effect of Temperature (T) on the conductivity (σ) of a semiconductor?
c.	What is the difference between BJT and MOSFET?
d.	What is Pinch off voltage (Vp) in MOSFET?
e.	What is the Bark-hausen criterion for oscillator?
f.	Name the various internal capacitance for BJT.
g.	A Hartley oscillator have following parameters $\mathrm{L}_{1}=500 \mu \mathrm{H}, \mathrm{L} 2=150 \mu \mathrm{H}$ and $\mathrm{C}=150 \mathrm{pF}$. Find the frequency of oscillations.

SECTION B

2. Attempt any three of the following:

a.	Draw \& Explain the Silicon (Si) semiconductor energy band diagram.
b.	An N-type semiconductor is implanted with Boron. The donor and acceptor concentrations are $\mathrm{N}_{\mathrm{D}}=\left(10^{16} / \mathrm{cm}^{3}\right.$ and $\mathrm{N}_{\mathrm{A}}=4 \times 10^{18} / \mathrm{cm}^{3}$. Calculate the Contact Potential $\left(\mathrm{V}_{\mathrm{o}}\right)$ and Depletion layer width (W). $\left(\right.$ Given, $\left.\mathrm{n}_{\mathrm{i}}=1.5 \times 10^{10} \mathrm{~cm}^{3}, \epsilon_{\mathrm{o}}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}, \epsilon_{\mathrm{r}}=11.8 \epsilon_{\mathrm{o}}\right)$
c.	Derive the expression for Depletion Layer width (W) of a semiconductor PN Junction.
d.	Draw the symbols and show the directions of currents of NPN \& PNP BJT, N- channel \& P-Channel depletion \& enhancement type MOSFETs.
e.	Draw \& explain Ebers-Moll model for BJT, Mention its real-life importance.

SECTION C

3. Attempt any one part of the following:
(a) Derive the expression for minority carrier lifetime (τ) in a semiconductor
(b) Derive the expression for Einstein Relation ($\mathrm{D} / \mu=\mathrm{kT} / \mathrm{q}$) for semiconductors.
4. Attempt any one part of the following:
(a) Explain the process of Forward and Reverse bias PN junction. Show with
energy band diagram that how Fermi Level changes according to biasing?
(b) A pure semiconductor is doped with donor impurities $\left(\mathrm{N}_{\mathrm{D}}\right)$ as $1: 10^{6}$ in Si atoms. The Si material has 5×10^{22} atoms $/ \mathrm{cm}^{3}$. Given that motilities $\mu_{\mathrm{n}}=1300 \mathrm{~cm}^{2} / \mathrm{v} . \mathrm{s}$, $\mu_{\mathrm{p}}=500 \mathrm{~cm}^{2} /$ v.s. Find: Conductivity due to Majority Carriers (σ_{n}). Conductivity due to Minority Carriers (σ_{p}).

Roll No: \square
BTECH
(SEM III) THEORY EXAMINATION 2021-22

ELECTRONIC DEVICES AND CIRCUITS

5. Attempt any one part of the following:
$7 \times 1=7$
(a) Draw the four basic feedback topologies. Compare the input and output resistance among the feedback topologies.
(b) Explain the operation \& working of anyone Optoelectronic Device such as: Photodiode, Solar Cells, or LED.
6. Attempt any one part of the following:
(a) Mention the conditions for oscillation. Derive the expression for the frequency of oscillation in Phase shift Oscillator.
(b) Measurements of V_{BE} and any two terminal currents (Ic, or I_{B}, or I_{E}) on a number of NPN transistors are tabulated below. For each, calculate the missing terminal current value and find α, β and I_{s} as indicated by the table:

Transistor	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
$\mathbf{V}_{\mathbf{B E}}(\mathbf{m V})$	690	690	580	780	820
$\mathbf{I}_{\mathbf{C}}(\mathbf{m A})$	1	1		10.10	
$\mathbf{I}_{\mathbf{B}}(\mathbf{m A})$	50	Ω	7	120	1050
$\mathbf{I}_{\mathbf{E}}(\mathbf{m A})$		1.07	0.137		75
$\boldsymbol{\alpha}$					
$\boldsymbol{\beta}$					
$\mathbf{I}_{\mathbf{S}}$					

7. Attempt any one part of the following:
(a) Draw \& explain the MOSFET Small Signal model.
(b) Consider a MOSFET process technology for wibich $\mathrm{L}_{\min .}=0.4 \mu \mathrm{~m}, \mathrm{t}_{\mathrm{ox}}=$ $8 \mathrm{~nm}, \mu_{\mathrm{n}}=450 \mathrm{~cm}^{2} / \mathrm{v} . \mathrm{s}, \mathrm{V}_{\mathrm{th}}=0.7$ volts,. Find.
I. Find C_{ox} and $\mathrm{k}_{\mathrm{n}}{ }^{\text {' }}$
II. For a MOSFET with $\mathrm{W} / \mathrm{L}=8 \mu \mathrm{~m} / 0.8 \mu \mathrm{~m}$, calculate the value of V_{GS}, and V_{DS} (min.) needed to operate the transistor in the saturation region with a dc current $\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$.
III. For the device in (b), find the value of $V_{G s}$ required to cause the device to operate as 1000Ω resistor for very small Vds.
