

				Sub	ject	Coc	le: F	COE	1038	
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 ELECTRONICS ENGINEERING

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 3

Q no.	Question	Mark	CO
		S	
a.	What you mean by Doping. Describe its need.	2	CO-1
b.	Why Si is preferred as compared to Ge in Semiconductor Electronics.	2	CO-1
c.	Differentiate between Clipper and Clamper circuit.	2	CO-2
d.	Compare LED and photo diode.	2	CO-2
e.	State two Difference between BJT and FET.	2	CO-3
f.	Define Threshold Voltage for an E-MOSFET. Also define I _{DSS} for an JFET.	2	CO-3
g.	What is unity gain amplifier(buffer)?	2	CO-4
h.	What is SLEW RATE explain briefly?	2	CO-4
i.	Compare analog and digital instruments.	2	CO-5
j.	Write the applications of CRO.	2	CO-5

SECTION B

2. Attempt any *three* of the following:

Q no.	Question	Marks	CO
a.	Explain Avalanche and Zener Breakdown Mechanism.	10	CO-1
b.	Write a short note on Tunnel and Varactor Diode.	10	CO-2
c.	Draw the basic structure of Common Base BJT and explain its principle	10	CO-3
	of operation with neat diagram with its input and output characteristics.		
d.	Define Op-Amp with the help of block diagram. List the ideal	10	CO-4
	characteristic of an Op-Amp. Explain working of Op-Amp as a Adder.		
e.	Draw and explain the block diagram of Digital Storage Oscilloscope	10	CO-5
	(DSO) also compare it with analog oscilloscope.		

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Mark	CO
		S	
a.	Draw the V-I characteristics of an ideal & practical diode and explain.	10	CO-1
	Also write the diode equation in support of your answer		
b.	What do you mean by diode resistances? Draw and explain the characteristics of transition and diffusion capacitance v/s applied voltage.		CO-1

Roll No: Subject Code: KOE038

Printed Page: 2 of 3

BTECH (SEM III) THEORY EXAMINATION 2021-22 ELECTRONICS ENGINEERING

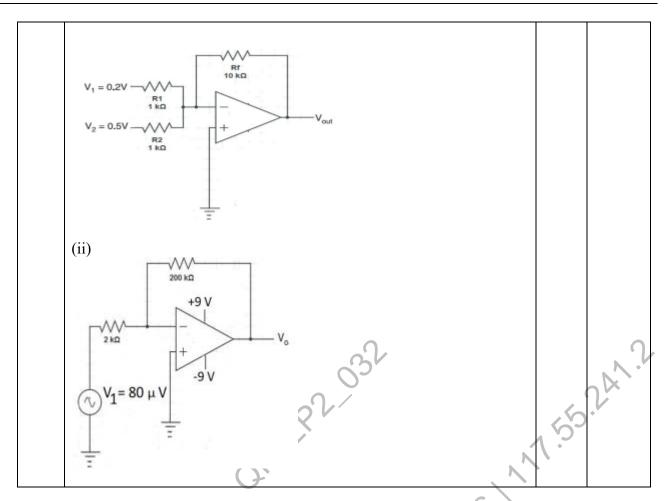
4. Attempt any *one* part of the following:

Q no.	Question	Mark	СО
a.	Determine Iz, I _L , I _R and V _L for the network shown in given fig. $ \begin{array}{c} & \downarrow \\ & \downarrow \\ $	10	CO-2
b.	Determine the output waveform for a given input waveform	10	CO-3

5. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Distinguish between enhancement type and depletion type MOSFETs. Draw the cross-section of N-channel enhancement MOSFET. Explain and draw the transfer characteristics.	10	CO-4
b.	Describe the construction of a NPN transistor. Define α and β with respect to BJT and derive the relationship between them.	10	CO-4

6. Attempt any *one* part of the following:


Q no.	Question	Marks	CO
a.	Explain the concept of Virtual ground. Explain working of Op-Amp as	10	CO-5
	a differentiator.		
b.	Determine the output of following Circuits	10	CO-5
	(i)		

Roll No: Subject Code: KOE038

Printed Page: 3 of 3

BTECH (SEM III) THEORY EXAMINATION 2021-22 ELECTRONICS ENGINEERING

7. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Describe measurement of Voltage, Frequency & Phase using CRO.	10	CO-1
b.	Describe the working of Digital Multimeter with their block diagram.	10	CO-1
	26-Mai-2021		