Printed Page: 1 of 2

Subject Code: KAS303

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2021-22

MATHEMATICS-III

Time: 3 Hours

 $y_0 = y_1 = 0.$

Notes:

Total Marks: 100

- Attempt all Sections and Assume any missing data.
- Appropriate marks areallotted to each question, answer accordingly.

SECTION-A		CO
Q1(a) Find	the Laplace transform of $\int_0^t e^{-t} \cos t dt$.	1
Q1(b) Evalu	hate: $L^{-1}(\frac{e^{-2p}}{p^2})$.	1
Q1(c) State	Modulation theorem.	2
Q1(d) Find	the Z-transform of $f(k) = \frac{1}{k}, \ k \ge 1.$	2
Q1(e) Prove	that the statement $(p \rightarrow q) \rightarrow (p \land q)$ is a contingency.	3
Q1(f) Show	that every sub- group H of an abelian group G is normal.	3
Q1(g) How	many bit strings of length 8 either start with 1 or end with two bits 00?	4
	$f(x) = 3x - 2$, find $f^{-1}(x)$.	4
Q1(i) Defin	e Maximal element and Minimal element of Poset.	5
Q1(j) Prove	the Boundedness (NULL) law i.e. $a * 0 = 0$.	5
	<u>, , , , , , , , , , , , , , , , , , , </u>	
SECTION-	Attempt ANY THREE of the following Questions Marks(3X10=30)	CO
$\frac{Q^{2}(a)}{\frac{dx}{dt}}$ +	Attempt ANY THREE of the following Questions Marks $(3X10=30)$ the following simultaneous equations by Laplace transform $3\frac{dx}{dt} - y = 2t$, $\frac{dy}{dt} - y = 0$ with the conditions $x(0) = 0, y(0) = 0$.	1
Q2(b) i)	$\frac{dy}{dt} - y = 0 \text{ with the conditions } x(0) = 0, y(0) = 0.$ Find the Fourier transform of $F(x) = \begin{cases} 1, & x < a \\ 0, & x > a \end{cases}$. Hence evaluate	2
	$\int_0^\infty \frac{\sin p}{p} dp.$	
ii	$x^{(0)} = x^{2}$	
	Hence find $\int_0^\infty \frac{x^2}{(x^2+1)^2} dx$.	
Q2(c) Cons	Hence find $\int_0^\infty \frac{x}{(x^2+1)^2} dx$. ider a ring $(R, +, *)$ defined by $a * a = a$. Determine whether the ring is nutative or not.	3
Q2(d) Solve	the difference equation $y_K - y_{K-1} - 6y_{K-2} = -30$. Given that $y_0 = 20$, $y_1 = -5$.	4
	Given that $y_0 = 20$, $y_1 = -5$. Boolen algebra B if $b + a = c + a$ and $b + a' = c + a'$ then $b = c$. Also if ca and $ba' = ca'$ then $b = c$.	5
SECTION-	C Attempt ANY ONE following Question Marks (1X10=10)	CO
O3(a) Draw	the graph and find the Laplace transform of the triangular wave function of	1
perio	$\frac{d}{d} \text{ of } 2c \text{ given by } f(t) = \begin{cases} t, & 0 < t \le c \\ 2c - t, & c < t < 2c \end{cases}$ that: $L^{-1}\left\{\frac{1}{(p^2+1)^3}\right\} = \frac{1}{8}[(3-t^2)sint - 3t cost]$	
Q3(b) Prove	that: $L^{-1}\left\{\frac{1}{(p^2+1)^3}\right\} = \frac{1}{8}[(3-t^2)sint - 3t cost]$	1
SECTION-	C Attempt ANY ONE following Question Marks (1X10=10)	CO
Q4(a) Deter the en	mine the distribution of temperature in the semi- infinite medium $x \ge 0$ when and $x = 0$ is maintained at zero temperature and the initial distribution of erature is F(x).	2
		2
	by Z-transform the difference equation $y_{k+2} + 6y_{k+1} + 9y_k = 2^k$;	~

Printed Page: 2 of 2 Subject Code: KAS303

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2021-22 **MATHEMATICS-III**

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO		
Q5(a) Consider	Consider the following argument and determine whether it is valid.				
Either I will get good marks or I will not graduate. If I did not graduate I will go to					
Canada. I	get good marks. Thus, I would not go to Canada.				
Q5(b) Translate the following into symbolic form and test the validity of the argument.					
If 6 is eve	If 6 is even then 2 does not divide 7. Either 5 is not prime or 2 divides 7. But 5 is				
prime the	erefore, 6 is odd.				
SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	СО		
SECTION-C		Marks (1X10=10)	CO 4		
SECTION-C Q6(a) Among th	Attempt ANY ONE following Question				
SECTION-C Q6(a) Among th (a) Da (b) Da	Attempt ANY ONE following Question e first 1000 positive integers: etermine the integers which are not divisible by 5, no etermine the integers divisible by 5, but not by 7, not	r by 7, nor by 9. by 9.			
SECTION-C Q6(a) Among th (a) Da (b) Da	Attempt ANY ONE following Question e first 1000 positive integers: etermine the integers which are not divisible by 5, no	r by 7, nor by 9. by 9.			

y Lattice, then for any $a, b, c \in L$. Prove the following $a \lor a = a$. (ii) $a \lor b = b \lor a$ (iii) $a \lor (b \lor c) = (a \lor (iv) a \lor (a \land b) = a$.		5
	$\lor b) \lor c$	
(iv) $a \vee (a \wedge b) - a$		
(1) $u \vee (u \land b) = u$.		
osets A and B:		5
Show that if $f: A \rightarrow B$ is an order isomorphism, then	there is an order	
isomorphism $g: B \rightarrow A$.	. 67	
OP ^r L ^r		
S. A		
2022		
26-1121-1		
-	Show that if $f: A \rightarrow B$ is an order preserving, then f Show that if $f: A \rightarrow B$ is an order isomorphism, ther isomorphism $g: B \rightarrow A$.	Show that if $f: A \to B$ is an order preserving, then f is one to one. Show that if $f: A \to B$ is an order isomorphism, then there is an order

PAPER ID-411527