Printed Page: 1 of 2 Subject Code: RAS301

BTECH (SEM III) THEORY EXAMINATION 2021-22 **MATHEMATICS-III**

Roll No:

Time: 3 Hours

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

1. Attempt all questions in brief.

a.	Define Harmonic function.
b.	Define the coefficients of Kurtosis.
c.	Discuss normal equation of the curve $y = ax + b$.
d.	Write Regula -false Method of iterative formula.
e.	Explain the Method of least square.
f.	What do you mean by initial value problem?
g.	Write the definition of Z - transform.

SECTION B

2. Attempt any *three* of the following:

a.	Using Cauchy's Residue Theorem Evaluate $\int_C \frac{z+1}{(z-1)(z-2)} dz$, where C is the circle					
	z =3.					
b.	Calculate the equations of the lines of regression for the data:					
	x 6 2 10 4 8					
	y 9 11 5 8 7					
c.	Using Newton Raphson method, find the real root of the equation $3x=\cos x+1$					
	correct to four decimal places.					
d.	Solve the initial value problem $\frac{dy}{dx} = 2x + y$, $y(0) = 1$ with $h = 0.1$ on the					
	interval [0, 0.2] By using Runge – Kutta method.					
e.	Determine the Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find Fourier sine transform					
	of $\frac{x}{1+x^2}$.					

0.

SECTION C

Attempt any one part of the following: 3.

				7 x 1	= 7	
terms	of	z	,whose	real	part	

(a)	Determine an analytic function $f(z)=u+iv$	in terms of z ,whose real part is
	$e^x \cos y.$	
(b)	State and Prove Cauchy's integral Theorem.	

4. Attempt any one part of the following:

1 | Page

The first four moments about the value 4 of a distribution are 7,1.5, 2.6 and 8.8. (a) Calculate the moments about the mean.

 $2 \ge 7 = 14$

7 x 3 = 21

Total Marks: 70

Subject Code: RAS301

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 **MATHEMATICS-III**

(b)	Calculate the equations of the lines of regression for the data:						
		X	6	2	10	4	8
		у	9	11	5	8	7

1921

Use Newton's backward difference interpolation formula to find the population

Find the real root of the equation $(17)^{\overline{3}}$ correct to four decimal places using

20

1931

27

The following tables gives the population for following years:

1911

15

5. Attempt any one part of the following:

Population(in

for the year 1951.

thousands)

Year

Newton-Raphson method.

1901

12

Attempt any one part of the following: 6.

Solve the following system of linear of	equations using Gauss-S	seidel method:			
x+5y+10z=10		A S			
6x+10y+2z=22.		N I			
	0	<u> </u>			
Solve $\int_{1}^{2} dx$ by using Simpson	's one third rule				
Solve $\int \frac{1}{x^2 + x + 1}$ by using simpson	i s one unita rule.				
0					
	. <u>.</u>				
Attempt any one part of the following: $7 \times 1 = 7$					
	$x+5y+10z=10$ $10x+6y-z=35$ $6x+10y+2z=22.$ Solve $\int_{0}^{2} \frac{dx}{x^{2}+x+1}$ by using Simpson	10x+6y-z=35 $6x+10y+2z=22.$ Solve $\int_{0}^{2} \frac{dx}{x^{2}+x+1}$ by using Simpson's one third rule.			

7. Attempt any one part of the following:

(a)	Solve by Z-transform the difference equation: $y_{k+2} - 3y_{k+1} + 2y_k = 0$, with			
	$y_0 = 0$, $y_1 = 1$ by using Z-transform			
(b)	State and prove convolution theorem of Z-Transform.			

PAPER ID-411564

(a)

(b)

7 x 1 = 7

1951

52

 $7 \times 1 = 7$

1941

39