

					P	rinte	d Pa	ge: 1	of 2	,
				S	ubje	ct C	ode:	KM	E302	
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 FLUID MECHANICS & FLUID MACHINES

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Q no.	Question	Marks	СО
a.	Define ideal fluid.	2	1
b.	Describe capillary rise.	2	1
c.	Define Froude's number.	2	2
d.	Describe the significance of Reynold's number.	2	2
e.	Explain eddy viscosity.	2	3
f.	Define laminar sub layer.	2	3
g.	Define unit power for a turbine.	2	4
h.	Explain the function of penstock in a hydroelectric power plant.	2	4
i.	Define a pump.	2	5
j.	Describe the slip of a reciprocating pump.	2	5

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Q no.	Question	Marks	CO
a.	A horizontal venturimeter with inlet diameter 200 mm and throat	10	1
	diameter 100 mm is employed to measure the flow of water. The reading		
	of the connected differential manometer is 180 mm of mercury.		
	Calculate the rate of flow if the co-efficient of discharge is 0.98.		
b.	For a two-dimensional flow the velocity potential function is given by	10	2
	the expression,		
	$\phi = x^2 - y^2.$		
	(i) Determine velocity components in x and y directions.		
	(ii) Determine stream function.		
c.	Derive the expression for energy thickness.	10	3
d.	Explain the governing of Pelton turbine with neat sketch.	10	4
e.	Explain the ideal indicator diagram. Describe the effect of friction in	10	5
	suction and delivery pipes on indicator diagram.		

SECTION C

3. Attempt any one part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Discuss the effect of increase in temperature on viscosity of fluids along	10	1
	with the logic.		
b.	Illustrate the difference between notch and weir. During an experiment	10	1
	in a laboratory, 0.05 m ³ of water flowing over a right-angled notch was		
	collected in 1 minute. If the head of the sill is 50 mm, calculate the co-		
	efficient of discharge.		

				C				_	2 of 2	
Roll No:				3	ивје	et C	oae:	KNI	E302	

BTECH (SEM III) THEORY EXAMINATION 2021-22 FLUID MECHANICS & FLUID MACHINES

4. Attempt any *one* part of the following:

$1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	The resistance R experienced by a partially submerged body depends	10	2
	upon the velocity V, length of the body l , viscosity of the fluid μ , density		
	of the fluid ρ and gravitational acceleration g. Using Buckingham's pi		
	theorem, determine an expression for R.		
b.	Illustrate the derivation for continuity equation for three-dimensional	10	2
	flow.		

5. Attempt any *one* part of the following:

$1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Illustrate:	10	3
	(i) Siphon		
	(ii) Pipes in series		
	(iii) Total energy line		
b.	A kite 0.8 m X 0.8 m weighing 3.924 N assumes an angle of 12 ⁰ to the	10	3
	horizontal. The string attached to the kite makes an angle of 45 ⁰ to the		
	horizontal. The pull on the string is 24.525 N when the wind is flowing		
	at a speed of 30 km/hour. Calculate the corresponding co-efficient of		, 1
	drag and co-efficient of lift. Density of air is given as 1.25 kg/m ³ .		

6. Attempt any *one* part of the following:

$1 \times 10 = 10$

	The state of the s		
Q no.	Question	Marks	CO
a.	Illustrate the derivation for the expressions of:	10	4
	(i) Unit discharge for a turbine		
	(ii) Unit speed for a turbine		
b.	A jet of water, 60 mm in diameter, strikes a curved plate at its center	10	4
	with a velocity of 18 m/s. The curved vane is moving with a velocity of		
	6 m/s in the direction of the jet. The jet is deflected through an angle of		
	165 ⁰ . Assuming the plate to be smooth, calculate:		
	(i) Thrust on the plate in the direction of jet		
	(ii) Power of the jet		
	(iii) Efficiency of the jet		

7. Attempt any *one* part of the following:

$1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Illustrate the derivation for the:	10	5
	(i) Specific speed of centrifugal pump		
	(ii) Minimum speed for starting a centrifugal pump		
b.	Illustrate the classification of reciprocating pump. Show that the work	10	5
	done by a reciprocating pump is proportional to the area of indicator		
	diagram.		