

Printed Page: 1 of 2

Subject Code: NME302

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 **MECHANICS OF SOLIDS**

Time: 3 Hours

Total Marks: 100

 $2 \ge 10 = 20$

10x3=

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

a.	Define stress and its type	
b.	What is the difference between (a) Nominal stress and true stress	
c.	What is simple bending or pure bending of beam?	
d.	Differentiate between direct stress and bending stress	
e.	Write the assumptions involved in the Euler's column theory	
f.	Explain in brief about laminated springs	
g.	Differentiate between thin walled and thick-walled pressure vessels	
h.	Write the expression for volumetric strain in thin cylindrical vessels	
i.	Define neutral axis	
j.	Explain shear center and its importance	
	SECTIONB	24.2
2	Attempt any three of the following: $10\sqrt{3}$	-30

SECTION

Attempt any *three* of the following: 2.

a.	Three bars of equal length and having, cross-sectional areas in ratio 1:2:4, are all
	subjected to equal load. Compare their strain energy
b.	A steel bar 10 cm wide and 8 mm thick is subjected to bending moment. The radius
	of neutral surface is 100 cm. Determine maximum and minimum bending stress in
	the beam.
с.	A hollow alloy tube 4 m long with external and internal diameters of 40 mm and 25
	mm respectively was found to extend 4.8 mm under a tensile load of 60 kN. Find
	the buckling load for the tube with both ends pinned. Also find the safe load on the
	tube, taking a factor of safety as 5
d.	A gas cylinder of internal diameter 40 mm is 5 mm thick. If the tensile stress in the
	material is not to exceed 30 MPa, find the maximum pressure which can be allowed
	in the cylinder
e.	Two wooden planks $150 \text{ mm} \times 50 \text{ mm}$ each are connected to form a T- section of a
	beam. If a moment of 6.4 kN-m is applied around the horizontal neutral axis,
	inducing tension below the neutral axis, find the bending stresses at both the extreme
	fibres of the cross- section

SECTION C

3. Attempt any one part of the following:

10x1=10

a.	Obtain the expression for maximum shearing stress and maximum shearing planes.
b.	A load carrying member is subjected to the following stress condition; Tensile stress $\sigma_x = 400$ MPa; Tensile stress $\sigma_y = -300$ MPa; Shear stress $\tau_{xy} = 200$ MPa (Clock
	wise). Find out the Principal stresses and their plane

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 MECHANICS OF SOLIDS

4. Attempt any *one* part of the following:

a.	A wooden beam of rectangular cross section is subjected to a bending moment of
	5KNm. If the depth of the section is to be twice the breadth and stress in wood is
	not to exceed $60N/cm^2$. Find the dimension of the cross section of the beam.
b.	A torque of 1 KN-m is applied to a 40 mm diameter rod of 3 m length. Determine
	the maximum shearing stress induced and the twist produced. Take $G = 80GPa$

5. Attempt any *one* part of the following:

a.	A T-section 150 mm \times 120 mm \times 20 mm is used as a strut of 4 m long with hinged	
	at its both ends. Calculate the crippling load, if Young's modulus for the material	
	be 200	
b.	Derive the relation for Euler's buckling load for both ends hinged condition	

6. Attempt any *one* part of the following:

a.	A cylindrical thin drum 800 mm in diameter and 4 m long is made of 10 mm thick	
	plates. If the drum is subjected to an internal pressure of 2.5 MPa, determine its	
	changes in diameter and length. Take E as 200 GPa and Poisson's ratio as 0.25.	
b.	A thick metallic cylindrical shell of 150 mm internal diameter is required t	
	withstand an internal pressure of 8 N/mm ² . Find the necessary thickness of the shell,	
	if the permissible tensile stress in the section is 20 N/mm ²	

7. Attempt any *one* part of the following:

a.	A rectangular beam 60 mm wide and 150 mm deep is simply supported over a span	
	of 4 metres. If the beam is subjected to a uniformly distributed load of 4.5 kN/m,	
	find the maximum bending stress induced in the beam	
b.	A steel tube 40 mm outside diameter and 30 mm inside diameter is simply supported	
	over a 6 m span and carries a central load of 200 N. Three such tubes and firmly	
	joined together, to act as a single beam, in such a way that their centres make an	
	equilateral triangle of side 40 mm. Find the central load, the new beam can carry, if	
	the maximum bending stress is the same in both the cases	
	See to	
	R.	
	O.Y.	
0 ¹		

PAPER ID-411923

10x1=10

10x1=10

10x1=10

10x1=10