

Printed Pages: 4 CS - 406

(Following Paper ID and	Roll No. to	be	fill	ed i	in y	our	An	swe	r B	ook	:)
PAPER ID: 1034	Roll No.										

B. Tech.

(SEM. IV) EXAMINATION, 2006-07

COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES

Time: 2 Hours] [Total Marks: 50

Note: Attempt all the questions.

- 1 Attempt any **four** of the following: $4\times3=12$
 - (a) If $\mathbf{u} = 3 \ \mathfrak{d}^7 6 \ \mathfrak{d}$ find the percentage error in \mathbf{u} at $\mathbf{g} = \mathbf{1}$, if the error in \mathbf{g} is 0.05.
 - (b) Compute the real root of $x^3 5x + 3 = 0$ in the interval [1,2] by the Regula falsi method. Perform three iterations only.
 - (c) By Newton Raphson method find the positive root of f(u) = x −2 sin x.
 Choose suitable initial guess and perform three iterations.
 - (d) Find the root of the equation $f(u) = x^3 3x 5 = 0$ which lies between 2 and 3 by the Muller's method. Perform two iterations only.

V-1034] 1 [Contd...

- (e) Apply the quotient difference method to obtain the approximate roots of the equation. $X^3 7x^2 + 10x 2 = 0$.
- (f) Define rate of convergence. Obtain rate of convergence of Newton Raphson method.

2 Attempt any four of the following: $4\times3=12$

(a) From the following table, find the number of students who obtained less than 45 marks by method of interpolation:

Marks :	0-30	31-40	41-50	51-60	61-70	71-80	81-100
No. of Students:	0	31	42	51	35	31	5

(b) The ordinates of the normal curve are given by the following table

<i>x</i> :	.0	.2	.4	.6	.8
y :	.3989	.3910	.3683	.3332	.2897

Calculate: (i) y(.25) (ii) y(.62).

Use Newton's method of interpolation.

(c) Use stirling formula to find y(28) given

x:	20	25	30	35	40
<i>y</i> :	49225	48316	47236	45926	44306

(d) Applying Lagrange's formula, find the interpolating polynomial f(x) for the following set of observations.

x:	0	1	4	5
y :	4	3	24	39

Also find f(2).

(e) By means of Newton's divided difference formula, find the values of f(2), f(8) and f(15) from the following table.

x:	4	5	7	10	11	13
f(u):	48	100	294	900	1210	2028

(f) Differentiate between interpolation and curve fitting.

3 Attempt any two parts:

 $7\times2=14$

(a) Fit a natural cubic spline to the following data:

x:	2	3	4
<i>y:</i>	11	49	121

Hence compute

- (i) y(2.5) and
- (ii) y'(2)
- (b) Find the first and second derivative at 1.1 for the data

x:	1.00	1.2	1.4	1.6	1.8	2.00
f(u):	0	.1280	.5440	1.2960	2.432	4.00

(c) Evaluate the integral

$$\int_{0}^{1} \frac{x^2}{1+x^3} dx$$

Simpson's rule taking four equal intervals, and hence find the value of log_e 2.

4 Attempt any two parts:

 $6\times2=12$

(a) For a bi variate distribution n = 18,

$$\sum x^2 = 60$$
, $\sum y^2 = 96$, $\sum x = 12$, $\sum y = 18$, $\sum xy = 48$

Find the equations of lines of regressions.

(b) Fit the curve y=ax^b to the following data, using method of least squares.

x:	1	2	3	4	5	6
<i>y</i> :	2.98	4.26	5.21	6.1	6.8	7.5

(c) Write short notes on:

 $6 \times 2 = 12$

- (i) Quality Control Methods
- (ii) Multiple Regression Analysis.

V-1034] 4 [1355]