

Printed Pages: 4 EC-402

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 3037

Roll No.

B. Tech.

(SEM. IV) EXAMINATION, 2006 - 2007 SIGNALS & SYSTEMS

Time: 3 Hours] [Total Marks: 100

Note: Attempt all questions.

- 1 Attempt any four parts of the following: $5\times4=20$
 - (a) A discrete time signal x(n) is defined as

$$egin{aligned} x(k) = egin{cases} 1 + rac{k}{3}, & -3 \leq k \leq -1 \ 1, & 0 \leq k \leq 3 \ 0, & otherwise \end{cases} \end{aligned}$$

- (1) Determine its values and sketch the signal x(k).
- (2) Sketch the signal x(-n+4)
- (b) For the following systems, determine whether or not the system is
 - (1) Stable
 - (2) Causal
 - (3) Linear
 - (4) Memory less
 - (i) $T[x(n)] = X(n-n_0)$
 - (ii) $T[x(n)] = 3e^{x(n)}$

V-3037] 1 [Contd...

- (c) (1) Show that the $x(t) = e^{iw_0t}$ complex exponential signal is periodic.
 - (2) Let $x_1(t)$ and $x_2(t)$ be periodic signals with fundamental periods T_1 and T_2 . Under what condition S is the sum $x(t) = x_1(t) + x_2(t)$ periodic.
- (d) Explain the properties of continuous time LTI system.
- (e) Let $x(t)*h_1(t)=f_1(t)$ and $h_1(t)*h_2(t)=f_2(t) \text{ with LTI system show that}$ $x(t)*f_2(t)=x(t)*\left\{h_1(t)*h_2(t)\right\}$
- (f) Consider a sequence x(n) x(n) = 4 - n $0 \le n \le 4$ = 0 otherwise

Find its discrete time Fourier transform $X(e^{jw})$.

- Attempt any **four** parts of the following: $5\times4=20$
 - (a) Find the Fourier transform of

$$x(t) = e^{-at} \quad \forall t \ge 0$$
$$= 0 \quad \forall t < 0$$

- (b) Describe the time domain properties of ideal frequency selective filters.
- (c) Design a band pass filter that has the centre of its pass band at $w = \frac{\pi}{2}$. Zero in its frequency response characteristic at w = 0 and $w = \pi$ and its magnitude response is $\frac{1}{\sqrt{2}}$ at $w = \frac{4\pi}{9}$.

V-3037] 2 [Contd...

- (d) Determine the Fourier transform of the signal $x(n) = \begin{cases} A, & -M \le n \le M \\ 0, & elsewhre \end{cases}$
- (e) Determine the output Y(n) of a relaxed linear time-invariant system with impulse response $h(n) = a^n u(n)$, |a| < 1 when the input is a unit step sequence, that is x(n) = u(n).
- (f) Determine the Fourier transform of the function y(n) = x(n) * h(n).
- Attempt any **two** parts of the following: $10 \times 2 = 20$
 - (a) (i) Show that distribution function

$$F_X(x) = \int_{-\infty}^x f_X(x) dx$$
 where $f_X(x) - \infty$

the density function of random variable x.

- (ii) A probability density function is given as $f_X(x) = a e^{-b|x|} X$ is the random variable, $x = -\infty$ to $x = \infty$. Determine the relationship between a and b.
- (b) A joint density function of the random variables X and Y is given as

$$f_{XY}(x, y) = \begin{cases} e - (x + y) & for \quad x \ge 0, y \ge 0 \\ 0 & otherwise \end{cases}$$

Determine the followings:

- (1) P(X < 1)
- (2) P(X > Y)
- (c) State different properties of probability density function and probability distribution functions.

- 4 Attempt any **two** parts of the following: $10 \times 2 = 20$
 - (a) State and prove sampling theorem.
 - (b) Compute the Fourier transform of the following signals:
 - $(1) \quad x(n) = 2^n u(-n)$
 - (2) $x(n) = \left(\frac{1}{4}\right)^n u(n+4).$
 - (c) Explain the discrete time processing of continuous time signal? To achieve this give the Block diagram of a system.
- 5 Attempt any two parts of the following: $10\times2=20$
 - (a) Find z-transform and also the frequency response of

$$h(n) = \left(\frac{1}{2}\right) \left[\left(\frac{1}{2}\right)^n + \left(\frac{-1}{4}\right)^n\right] u(n)$$
 locate the zeros

and poles in z – plane.

- (b) Determine the z-transform of the signals and ROC of the following :
 - (1) $x(n) = na^n u(n)$

(2)
$$x(n) = (-1)^{n+1} \frac{a^n}{n} u(n-1)$$

(c) Using z-transform find the convolution two signals

$$x_1(n) = \{1, -2, 1\}$$

$$x_2(n) = \begin{cases} 1, & 0 \le n \le 5 \\ 0, & elsewhere \end{cases}$$