

Printed Pages : 4			T	EC	_ 4	10	
(Following Paper ID and Roll No. to be filled in your Answer Book)							
PAPER ID: 3081	Roll No.						

B. Tech.

(SEM. IV) EXAMINATION, 2006-07 ELECTRO MAGNETIC FIELD THEORY

Time: 3 Hours] [Total Marks: 100

Note: Attempt all the questions.

- 1 Attempt any **four** of the following:
 - (a) Write down gradient of any scalar and divergence and curl of any vector. \overrightarrow{A} in different co-ordinate system.
 - (b) If $\overrightarrow{A} = \alpha \hat{a}_x + 2\hat{a}_y + 10\hat{a}_z$ and $\overrightarrow{B} = 4 \alpha \hat{a}_x + 8\hat{a}_y 2 \alpha \hat{a}_z$ find out the value of α for which the two vectors become perpendicular.
 - (c) Given points A(x=2, y=3, z=-1) and $B(\rho=4, \phi=-50^{\circ}, z=2)$ find the distance A to B.

5

(d) State the word statement of Coulomb's law of forces. Three point charges $q_1 = 10^{-6}C$, $q_2 = -10^{-6}C$ and $q_3 = 0.5 \times 10^{-6}C$ are located in air at the corners of an equilateral triangle of 50 cm side. Determine the magnitude and direction of the force of q_3 .

V-3081] 1 [Contd...

$\rho_e = 4 nc/m$ lie in the $x = 0$ plane at $y = 0$	4 <i>m</i> .
Find \vec{E} at $(4,0,10)m$.	
Charge distributed throughout a volume V	5
with energy content $W_E = \frac{1}{2} \int_V \rho V dV$. Show	that
2 •	is
•	
Explain convection current and conduction	5
current. Derive ohm's law in point form. The electric field intensity in polystyrene	5
$(\epsilon_r = 2.55)$ filling the space between the	
10 kV/m. The distance between the plates is 1.5 mm. Calculate: (i) The surface charge density of free charge on the plates (ii) The	
Derive dielectric - dielectric boundary conditio	ns. 5
	are
separated by an infinitesimal gap $r = 0$. If	
$V(\theta = \pi/10) = 0$ and $V(\theta = \pi/6) = 50 V$ f	ind
$m{V}$ and $m{E}$ between the cones. The electric field intensity at a point on the surface of a conductor is given by	5
$\overrightarrow{E} = 0.2 \hat{a}_x - 0.3 \hat{a}_y - 0.2 \hat{a}_z V/m$. Find the surface charge density at that point.	ne
Determine \overrightarrow{E} in spherical co-ordinates from	5
Poisson's equation, assuming a uniform charged density ρ .	ge
2 [Co	ntd
	with density ρ gives rise to an electric field with energy content $W_E = \frac{1}{2} \int_V \rho V dV$. Show its equivalent is $W_E = \frac{1}{2} \int_V \epsilon E^2 dV$ where ϵ permittivity of the medium. Input any four of the following: Explain convection current and conduction current. Derive ohm's law in point form. The electric field intensity in polystyrene ($\epsilon_r = 2.55$) filling the space between the plates of a parallel plate capacitor is 10 kV/m. The distance between the plates is 1.5 mm. Calculate: (i) The surface charge density of free charge on the plates (ii) The potential difference between the plates. Derive dielectric - dielectric boundary condition. Two conducting cones ($\theta = \pi/10 and \theta = \pi/6$) of infinite extent separated by an infinitesimal gap $r = 0$. If $V(\theta = \pi/10) = 0$ and $V(\theta = \pi/6) = 50 V$ for V and E between the cones. The electric field intensity at a point on the surface of a conductor is given by $\vec{E} = 0.2 \hat{a}_x - 0.3 \hat{a}_y - 0.2 \hat{a}_z V/m$. Find the surface charge density at that point. Determine \vec{E} in spherical co-ordinates from Poisson's equation, assuming a uniform charged density ρ .

Two uniform line charges of density

(e)

5

- 3 Attempt any two of the following:
 - Define Bio Savart law and Amper's law A long, straight conductor cross section with radius a has a magnetic field strength $\overrightarrow{H} = \left(\frac{Ir}{2\pi a^2}\right) \hat{a}_{\phi}$ with in the conductor (r < a) and $\overset{
 ightarrow}{H} \left(\dfrac{I}{2\pi r} \right) \hat{a}_{\phi}$

for (r < a). Find \overrightarrow{J} in both the region.

A charge a particle of mass 2 kg and charge 10 (b) IC starts at the origin with velocity $3\hat{a}_{v}$ m/s and travels in the region of uniform magnetic

field $\overrightarrow{B} = 10 \ \hat{a}_z \ Wb/m^2$ At t = 4s, calculate (i) The velocity and acceleration of the particle.

- The magnetic force on it. (ii)
- (iii) Kinetic energy and localon
- 10 Consider the loop of Fig. (1). If

 $\overrightarrow{B} = 0.5 \, \hat{a}_z \, Wb/m^2$, $R = 20 \, \Omega$, $l = 10 \, cm$ and the rod is moving with a constant velocity of $8 \hat{a}_x$ m/s, find :

- The induced emf in the rod
- (ii)The current through the resistance
- (iii) The motional force on the rod
- The power dissipated by the resistance. (iv)

V-3081]

- 4 Attempt any two of the following:
 - (a) A lossy dielectric has an intrinsic impedance of $200 \angle 30^{\circ} \Omega$ at a particular frequency. If at that frequency the plane wave propagating through the dielectric has the magnetic field component

$$\overrightarrow{H} = 10 e^{-\alpha x} \cos\left(wt - \frac{1}{2}x\right) \hat{a}_y A/m$$

final $\stackrel{\rightarrow}{E}$ and α and skin depth.

(b) Determine the polarization. State of plane wave with electric field

$$\overrightarrow{E}(z,t) = \hat{a}_x 3\cos(wt - kz + 30^\circ)$$

$$-\hat{a}_y 4\sin(wt - kz + 4s^\circ) mV/m$$

- (c) How the wave propagation takes place in dispersive medium? Light is incident from air to glass at Brewsters angle. Determine the incident and transmitted angles.
- 5 Attempt any two of the following:
 - (a) Derive transmission line differential equation
 Derive the condition of lossless transmission
 from it.
 - (b) (i) A $50~\Omega$ lossless transmission line is terminated by a load inpedance $Z_l = (50-j75)\Omega$. If the incident power is $100~\mathrm{mW}$, find the power dissipated by the load
 - (ii) A transmission line operating at 500 MHz has $Z_0 = 80\Omega$, $\alpha = 0.04$ N p/m, $\beta = 1.5$ rad/m, find the line parameters.
 - (c) Using the concept of Maxwell's equation explain how waves propagates in guided waves.

V-3081] 4 [16600]