

Printed Pages: 4 TEC – 402

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 3082

Roll No.

B. Tech.

(SEM. IV) EXAMINATION, 2006-07 SIGNAL & SYSTEM

Time: 3 Hours | [Total Marks: 100]

Note: (1) Attempt all questions.

(2) All questions carry equal marks.

- 1 Attempt any **four** parts of the following: 5×4
 - (a) Classify signals according to signal characteristics.
 - (b) A continuous time linear system s with input x(t) and output y(t) yields the following input output pairs :

$$x(t) = e^{j2t} \rightarrow y(t) = e^{j3t}$$

$$x(t) = e^{-j2t} \rightarrow y(t) = e^{-j3t}$$

- (i) if $x_1(t) = \cos(2t)$ determine the corresponding output $y_1(t)$ for system s.
- (ii) if $x_2(t) = \cos(2(t-\frac{1}{2}))$ determine the corresponding output $y_2(t)$ for system s.

V-3082] 1 [Contd...

(c) A discrete time signal is shown in fig.

Sketch and label carefully each of the following signal (i) x (2t+1) (ii) x (4-t/2).

(d) Explain the properties of LTI system and find the convolution between of signals.

$$x[n] = \alpha^n u[n]$$

$$\hbar[n] = u[n]$$

(e) Consider a causal LTI system with x[n] as input and output y[n] are related by difference equation.

$$Y[n] = \frac{1}{4} y[n-1] + x[n]$$

Determine y[n] if $x[n] = \delta$ [n-1]

- (f) What are Dirichlet's conditions.
- 2 Attempt any four parts of the following: 5×4
 - (a) Obtain the Fourier series component of the periodic square wave signals

V-3082] 2 [Contd...

(b) Determine the fourier transform of the Gate function

Fig. 3

(c) Find the laplace transform of the triangular pulse.

Fig. 4

(d) Determine the magnitude spectrum of the pulse signal x(t)

V-3082] 3 [Contd...

(e) Find the Fourier transform of the signal f(t) shown in figure-6.

Fig. 6

(f) Find the convolution of the signal given below using Fourier transform

$$x_1(n) = \left(\frac{1}{2}\right)^n u(n), x_2(n) = \left(\frac{1}{3}\right)^n u(n)$$

3 Attempt any two of the following:

 10×2

(a) Determine the frequency response and magnitude response of the system given by

$$y[n] + \frac{1}{2}y[n-1] = x[n] - x[n-1]$$

(b) (i) Consider a causal LTI system with frequency response

$$H(jw) = \frac{1}{jw+2}$$
 for a particular input $x(t)$
this system in observed to produce the
output $y(t) = e^{-2t} u(t) - e^{-3t} u(t)$
Determine $x(t)$

- (ii) Find the inverse laplace transform of $\mathbf{X(S)} = \frac{2}{\left(\mathbf{S+4}\right)\left(\mathbf{s-1}\right)} \quad \text{for all possible}$ signal convergence.
- (c) (i) Use the convolution theorem of laplace transform to find $\mathbf{y(t)} = \mathbf{x_1(t)} * \mathbf{x_2(t)}$ if $\mathbf{x_1(t)} = \mathbf{e^{-3t}u(t)}$ and $\mathbf{x_2(t)} = \mathbf{u(t-2)}$
 - (ii) For a system $H(S) = \frac{S+2}{S2+5S+4}$ find the impulse response for the system function.
- 4 Attempt any two of the following: 10×2
 - (a) (i) Find the Nyquist frequency and Nyquist rate for each of the following signals :
 - (i) $x(t) = 1 + \cos(200 \pi t) + \sin(400 \pi t)$

(ii)
$$x(t) = \frac{\sin (4000 \pi t)}{\pi t}$$

(ii) Impulse train sampling of r[n] is used to obtain :

$$g[n] = \sum_{K=-\infty}^{\infty} x(n) \delta[n-KN]$$

if
$$x(e^{\prime}w) = 0$$
 for $3\pi/7 \le |w| \le \pi$

Determine the largest value for the sampling internal N which ensures that no aliasing takes place while sampling x[n].

(b) (i) Find the inverse laplace transform of

$$G(s) = \frac{10s^2 e^{-s}}{(s+1)(s+3)}$$

(ii) Solve the differential equation

$$\frac{d^2}{dt^2} x(t) + \frac{7d}{dt} x(t) + 12 x(t) = 0$$

for times t > 0 subject to the initial condition $x(0^-) = 2$ and

$$\frac{d}{dt}x(t)t=0^{-}=-4$$

- (c) Explain the following terms in brief with properties:
 - (i) LTI system
 - (ii) ROC in Z transform
 - (iii) Stability condition for LTI system.
- 5 Attempt any **two** of the following: 10×2
 - (a) Realize the system given as

$$y(n) - \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = x(n) + 2x(n-1)$$

using Z Transform with minimum no. of delay unit, assume initial condition is zero.

(b) The input and output of a causal LTI system are related by the differential equation.

$$\frac{d^2y(t)}{dt^2} + \frac{6 dy(t)}{dt} + 8y(t) = 2x(t)$$

What is the response of this system if $x(t) = te^{-2t}u(t)$; assume initial condition is zero and use Fourier transform method.

- (c) (i) Discuss various properties of ideal frequency selective filters in time-domain.
 - (ii) A causal LTI filter has the frequency response H(jw) shown in figure-7

Fig. 7

Determine the filtered output signal y(t) if $x(t) = e^{jt}$

V-3082] 7 [10,525]