Printed Pages: 4

TCS - 407

[Contd...

(Following Paper ID and	Roll No. to	be	filled	in	your	Answer	Book)
PAPER ID: 1072	Roll No. [П		

B. Tech.

(SEM. IV) EXAMINATION, 2007-08 DATA STRUCTURING USING 'C'

Time: 3 Hours] [Total Marks: 100 Note: Attempt all questions. 1 Attempt any two parts of the following: (i) Define an array. (a) (ii) Consider the linear array, A (5:50), whose base address is 300 and the number of words per memory cell is 4. Find the address of A[15]. (iii) What do you mean by time complexity of an algorithm? (iv) The time complexity of an algorithm T(n), where n is the input size given by T(n)=T(n-1)+n, if n>1 and T(n)=1. otherwise is _____. Explain how you are getting the result? (b) Write an algorithm to evaluate a postfix 5 expression using a stack. Using the algorithm given by you in (ii) 3 question 1(b)(i), evaluate the following postfix expression. 5, 6, 2, +, *, 12, 4, 1, -Define: Stack U-1072]

(c)	(i)	Explain with necessary algorithms the representation of stack using linked list an array.	4 d
	(ii)	How can a recurssive procedure be converted to a non-recursive one using stack?	3
	(iii)	Give a procedure to find the average of the values stored in a linear array, A.	3
Atte	mpt a	ny two parts of the following:	
(a)	(i)	Give an algorithms to insert an element after a given node in a linked list.	5
	(ii)	What is doubly linked list?	2
	(iii)	Explain with diagram how a linked list is represented in memory.	3
(b)	(i)	Give the procedure to delete a node from a two-way list.	4
	(ii)	What is a header linked list?	2
	(iii)	What is a deque?	2
	(iv)	What conditions will indicate that the circular queue is (a) Full (b) Empty	2
(c)	(i)	What is a queue?	2
st nev	(ii)	Suppose a queue is stored in a circular array with N memory cells.	
		(a) Find the number of elements in a queue in terms of FRONT and REAR.	3
		(b) When will the array be filled?	1
	(iii)	Write an algorithm to insert an element into a queue.	4

3			any four parts of the following:	
	(a)		What is a complete binary tree?	
		(ii)		
			and preorder traversal's node sequence)
			are: Inorder: EACKFHDBG	
			Preorder: F A E K C D H G B.	
			Draw the tree.	
	(b)			3+1+1
	001	Wh	nat is its time complexity? Compare its time plexity with that of linear search.	
	(c)	Dis	cuss in brief the linear probing collision	3+2
		resc	plution technique. What is the disadvantage	re Jiz
			this technique? How could it be overcom	
	(d)	(i)	What do you mean by collision and	1+1
			overflow in a hash table?	
		(ii)	Discuss in brief the hash functions you know.	3
	(e)	Disc	cuss the Huffman's algorithm.	5
	(f)		at is a heap? Give an algorithm to	1+4
			ert an element into a heap.	
			(e) (i) Aybut in a spanning tre?	
4			ny four : museumann build to	
	(a)	(i)	What is binary search tree?	1
		(ii)	Give an algorithm for searching in a binary search tree.	4
	(b)	(i)	Derive the expression for time complex of heapsort.	ity 3
		(ii)	Arrange in increasing order of time	2
			complexity of the following algorithms:	
			Bubblesort, Heapsort, Insertion sort,	
			Quicksort.	
	(c)	(i)	Give the algorithm for bubble sort.	3
		(ii)	What is its time complexity?	2
J-1	072]		[Co	ntd
		* U	1 0 7 2 *	iitu

(d)	Discuss B trees in brief.
(e)	(i) Which traversal of a Binary Search Tree 1 result in elements in sorted order?
	(ii) Obtain a height balanced tree starting 4
	from an empty tree and then on the
	following sequence of insertions: March,
	May, November, August, April, January,
	December, July, February, June, October,
1-5	September.
(f)	Give algorithm for insertion into an AVL tree. 5
	mass send do set priving vegetor
	wer any four : and and and an area
(a)	Give the algorithm for Breadth First Search. 4+1
	What data structure do you use here?
(b)	(i) Define: path between two nodes in a 1+1 graph; connected graph.
	(ii) Discuss in brief the different representations of a graph.
(c)	(i) What is the advantage of indexing a file? 2
	(ii) Compare indexing and hashing. 3
(d)	Classify indices and discuss them in brief. 5
(e)	(i) What is a spanning tre?
	(ii) Find the minimum spanning tree of the graph below.
	$A \leftarrow 6$ $B \rightarrow C$
	too my consented at what
	4 1
	magle Same
	or nothern X
(f)	Write short notes on any one: $5x1=5$
	(i) Sequential Files
	(ii) R ⁺ troop

when six hime eampiexis?

5