

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 4080 Roll No.

B. Tech.

(SEM. IV) EXAMINATION, 2007-08

	KINEMATICS OF MACHINE	
Time: 3	Hours] [Total Marks : 100)
Note:	(1) Attempt all questions.	
	(2) All questions carry equal marks.	
	(3) Assume suitable value for missing data.	
1 An	swer any four parts.	
(a)	How many types of links you know? Explain swith examples.	5
(b)	Explain at least two constrained motion with suitable examples.	5
(c)	Sketch and explain any two inversion of a double slider crank chain.	5
(d)	What do you mean by degree of freedom of a mechanism? Explain with examples.	5
(e)	Determine the degree of freedom in each of the following cases shown in Fig. 1.	5

- Explain the methods of locating instantaneous (f) centre.
- Answer any two parts. 2
 - Explain Klein's construction to draw 10 (a) accelerations diagram for single slider crank mechanism.
 - What is Coriolis component of acceleration? 10 (b) Derive an expressions for evaluation it and explain how the direction is fixed.
 - What are the different types of approximate 10 (c) straight line Motion Mechanisms? Explain any one of them with neat diagram.
- 3 Answer any four parts:
 - Discuss the movability of four bar mechanism if the length of the links are in arithematic progression.
 - (b) Some four bar linkages are shown in Fig. 2. Where the numbers indicate in respective link length in cm. Identify the nature of each mechanism

5

- (c) Explain Freudenstein Equation for computing 5 link length of a four bar mechanism.
- (d) Discuss the method of determining the angles for input and output link in a four bar mechanism for function generation.
- (e) Explain Three Portion Synthesis Slider Crank 5 Mechanism.
- (f) Explailn Hart's mechanism with neat diagram. 5

4 Answer any two parts:

- (a) (i) With neat diagram, define the terms base circle, prime circle and pressure angle for a Cam.
 - (ii) Explain with neat sketches the different types of Cam and follower.
- (b) Establish a relation between pressure angle, distance of the location of the follower from the Cam Center and the angle of rotation of a Cam for a Cam follower mechanism with roller follower. Assume the follower to be an offset translating follower.

(c) A cam rotating at 150 rpm, operates a reciprocating roller follower of radius 2.5 cm. The follower axis a offset by 2.5 cm to the right. The least radius of the Cam is 5 cm. and the stroke of the follower is 5 cm. Ascent and descent both take place by uniform acceleration and retardation. Ascent takes place during 75° and descent during 90° of Cam rotations. Dwell between ascent and descent is 60°. Draw velocity and acceleration diagrams.

5 Answer any two parts:

- (a) (i) Derive an expression for velocity of 7+3 sliding between pair of involate teeth.
 - (ii) With the neat diagram, show the followings: addendum, working depth, and Base Circle.
- (b) Prove that in Sun and Planet gear train arrangement, irrespective of whichever wheel is fixed the velocity ratio is always less than or equal to unity.
- (c) Give the comparison between Involute and cycloidal tooth profile.

Also derive the relation to obtain length of path of contact for two meshing spur gears having involute profile.