

Printed Pages: 4

TEC - 403

(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID: 3083 Roll No.

B. Tech.

(SEM. IV) EXAMINATION, 2007-08

SEMICONDUCTOR MATERIALS & DEVICES

Time: 3 Hours]

[Total Marks: 100

Note: (1) Answer all questions.

(2) Suitable data can be assumed, if missing.

1 Answer any four from the following:

5x4 = 20

- (a) How simple cubic, centered cubic, and facecentered cubic structures differ from one another?
- (b) What are advantages and disadvantages of impurities in semiconductor solids? Explain them with suitable examples.
- (c) Obtain lattice constant and radius of the atom having simple cubic lattice and volume density of $3 \times 10^{22} / cm^3$ assuming that the atoms are hard spheres with each atom touching its nearest neighbour.
- (d) Calculate the surface density of atom in face centered cubic structure with lattice constant of

 4.75 A for 111 plane.

- (e) What is Fermi level? How does it depend on temperature?
- (f) Obtain the inherent RC time constant of sample of thickness t and area A in terms of its conductivity σ and the permittivity ε.
- 2 Answer any four parts from of the following: 5x4=20
 - (a) Obtain an equation for photocurrent in terms of lifetime and transit time of carriers in a sample dominated by μ_n .
 - (b) What is photoconductivity? Show that photocurrent is proportional to the lifetime (τ_n) and inversely proportional to transit time (τ_t) of carrier.
 - (c) What is IGBT? Draw its equivalent circuit and enumerate its special features?
 - (d) Obtain equation of diffusion current in terms of lifetime of the carrier and other parameters.
 - (e) Why optical fiber has become these days so important?
- 3 Answer any two parts from the following: 10x2=20
 - (a) What happens to the contact potential and the depletion width with increasing reverse and forward biases?
 - (b) How semiconductor differs from that of the metal and insulators on the basis of band gap?

- (c) Which is the hot carrier diode? Describe its special advantages and disadvantages. Draw its symbol and I-V characteristics.
- 4 Answer any two parts from the following: 10x2=20
 - (a) How heterojunction improves the performance of the junction? Explain it in comparison to the homojunction.
 - (b) What are the factors that affect the amplification factor of the BJT ?
 - (c) How do you define light emitting materials?
 What are the voltage drop and current limits of a general LED? What determines the emission of colour of the LED?
- Answer any two parts from the following: 10x2=20
 - (a) Three n-p-n transistors are identical except that transistor 2 has base region twice as long as transistor 1, and transistor 3 has the base region doped twice as heavily as transistor 1. Rest parameters of all transistors are identical. Which transistor has largest value of
 - (i) emitter injection efficiency
 - (ii) base transport factor
 - (iii) punch through voltage
 - (iv) common emitter current gain?
 - (b) What is the advantages of the MESFET? Draw its structure and explain its working.

(c) What determines the peak tunneling voltage V_p of a tunnel diode? Calculate the minimum forward bias at which the tunneling through it occurs when the trapping level (E_t) is located 0.3V above the valence band. Assume $E_G = \mathbf{1}V$, $E_{Fn} - E_C$ on the n-side equals the $E_1 - E_{Fp}$ on p-side and is equal to 0.1 V.

orney ye a more tipler emitting materials. 9