

Printed Pages: 4

TCS - 401

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 1067-NEW

Roll No.

B. Tech.

(SEM. IV) EXAMINATION, 2008-09 COMPUTER ORGANIZATION

Time: 3 Hours]

[Total Marks: 100

- Note: (1) Attempt ALL questions.
 - (2) All questions carry equal marks.
 - (3) Be precise in your answer.
 - (4) No Second Answer book will be provided.
- 1 Attempt any four parts of the following: 5×4=20
 - (a) Represent the following conditional control statement by two register transfer statements with control function:

if (P=1) then (R1 \leftarrow R2) else if (Q=1) then (R1 \leftarrow R3)

- (b) Register A holds the 8-bit binary 11011001.

 Determine the B operand and the logic microoperation to be performed in order to change the
 value in A to:
 - (i) 01101101
 - (ii) 11111101

- (c) Design a 4-bit adder-subtractor with complete block diagram.
- (d) What do you mean by high speed adder? Discuss design of high speed adders.
 - (e) Write short note on the following:
 - (i) Common Bus system
 - (ii) Bus Arbitration.
 - (f) Give IEEE standard for floating point numbers.

- 2 Attempt any two parts of the following: 10×2=20
 - (a) What do you understand by hard wired control unit? Give various methods to design hardwired control unit. Describe one of the design methods for hardwired control unit with suitable diagrams.
 - (b) Write short note on the following:
 - (i) Multiple-bus organization
 - (ii) Micro-programmed control unit.
 - (c) (i) What do you mean by wide-branch addressing? Explain with example.
 - (ii) Differentiate between a microprocessor and
 a microprogram? Is it possible to design a microprocessor without a microprogram?
 Explain.
- 3 Attempt any two parts of the following: 10×2=20
 - (a) (i) A computer has 32-bit instructions and 12-bit addresses. If there are 250 two-address instructions, how many one-address instructions can be formulated?

(ii) Write a program to evaluate the arithmetic statement using a general register computer with three address instructions:

$$X = A - B + C * (D * E - F)$$

- (b) What is the significance of addressing modes?

 Describe various addressing modes with suitable examples.
- (c) Write short note on the following:
 - (i) RISC and CISC
 - (ii) Stack Organization.
- 4 Attempt any two parts of the following: 10×2=20
 - (a) (i) Describe DMA with suitable block diagram.
 Why does DMA have priority over the
 CPU when both request a memory transfer?
 Explain.
 - (ii) What programming steps are required to check when a source interrupts the computer while it is still serviced by a previous interrupt request from the same source? Explain.
 - (b) Write short note on the following together with their importance:
 - (i) Input-output processor
 - (ii) Serial Communication.
 - (c) Why Input-Output interface is required?

 Describe various methods for I/O interface together with their merits and demerits.

- 5 Attempt any two parts of the following: 10×2=20
 - (a) A ROM chip of 1024 × 8 bits has four select inputs and operates from a 5-volt power supply. How many pins are needed for the IC package? Draw a block diagram and label all inputs and output terminals in the ROM.
 - (b) Define the terms address space and memory space. An address space is specified by 24 bits and the corresponding memory space by 16 bits. Find the following:
 - (i) How many words are there in the address space?
 - (ii) How many words are there in the memory space?
 - (iii) If a page consists of 2K words, how many pages and blocks are there in the system?
 - (c) Write short notes on any two of the following:
 - (i) Auxiliary memory and land
 - (ii) Memory Hierarchy
 - (iii) Virtual Memory
 - (iv) Cache Memory.