

Printed Pages: 4

TEE - 405

10

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 2049

Roll No.

B. Tech.

(SEM. IV) EXAMINATION, 2008-09

ELECTRICAL MACHINES

Time: 3 Hours]

[Total Marks : 100

Note:

- (1) Attempt all questions
- (2) All questions carry equal marks.

Answer any two parts of the following:

- (a) A 100 kVA transformer has its maximum efficiency of 0.98 at full load at unity power factor. During the day it is loaded as follows:

 12 hrs 20 kW at power factor 0.5
 6 hrs 45 kW at power factor 0.9
 6 hrs 80 kW at power factor 0.8
 Calculate all-day efficiency of the transformer.
- (b) What is necessity of a starter for a d.c. motor? 10 Explain with a neat sketch the working of a 3-point d.c shunt motor starter bringing out the protective features incorporated in it.
- (c) Explain the effects of armature reaction on the main field flux by using developed view of armature current sheet and poles of a d.c. machine. Hence outline the bad effects of armature reaction.

2049]

- 2 Answer any two parts of the following:
 - (a) Calculate the overall efficiency of a 250 V, 100 kW, d.c. shunt generator at full load if the resistance of the armature and shunt field are $0.006~\Omega$ and $25~\Omega$ respectively. The core, friction and windage losses together are $3.2~\mathrm{kW}$.
 - (b) Why is it advantageous to use double revolving field theory for determining the running performance of a single-phase induction motor?
 Draw torque-speed characteristics of a 1 φ induction motor based on double-revolving field theory and discuss about the magnitude of torque at zero speed and synchronous speed.
 - (c) A 4-pole 3-φ induction motor delivers 37 H.P. at the shaft at a speed of 1425 rpm on 500 V, 50 Hz supply. The mechanical losses total 3 HP and power factor is 0.9. Calculate for this load:
 - (i) The slip
 - (ii) The rotor copper losses
 - (iii) The total power input if the startor losses are 2500 W.
 - (iv) The efficiency
 - (v) The line current.
- 3 Answer any four parts of the following:
 - (a) Explain the terms:
 - (i) air-gap power
 - (ii) internal mechanical power developed and
 - (iii) shaft power.

How are these terms related with each other?

5

(b)	Explain working principle of a synchronous motor.	5
(c)	What is an auto transformer? State its merits and demerits over the 2-Wdg. transformers.	5
(d)	A 11000 / 2200 V, single phase transformer is rated at 1000 kVA, if the two windings are connected in series to form an auto transformer determine its rated voltage and power.	5
(e)	What is meant by three phase transformer	5
1000	groups? What are the possible connections for	
	a $3-\phi$ transformer bank?	
Ansv	ver any four parts of the following:	
(a)	Why rotating field system is preferred	5
	over the stationary field system in synchronous	
	generator? A 4 pole alternator rotates at 1500 rpm. What is the frequency of the generated	
(b)	voltage? Draw the phasor diagram of a loaded alternator	5
(0)	for the following conditions:	3
	(i) lagging p.f.	
	(ii) leading p.f (iii) unity p.f.	
(c)	What do you mean by synchronization? Describe	5
(0)	any one method of synchronizing alternators.	
(d)	A $3-\phi$ 6 pole star connected alternator	5
	revolves at 1000 rpm. the stator has 90 slots and 8 conductors/slot The flux/pole is 0.05 Wb	
	(sinusoidally distributed). Calculate the voltage	
	generated / phase by the machine if winding factor	
	is 0.96.	
(e)	Explain the effect of excitation on the line current with regard to synchronous motor.	5

3

[Contd..

2049]

5	Ansv	wer any four parts of the following:	
	(a)	What is a two phase servo motor? Draw its	5
	ejre	torque speed characteristics for various control voltages.	
	(b)	Describe the construction and working of a capacitor-start single-phase induction motor.	5
	(c)	Explain the operation of a stepper motor. What are the merits and demerits of stepper.	5
		motors?	
	(d)	Describe Sumpner's (back to back) test used for transformers. Indicate its advantages?	5
	(e)	Explain concept of braking in dc and ac motors.	5

Discuss industrial applications of dc series motors. 5