

Printed Pages: 4

TCS - 405

(Following Paper ID and	Roll No. to be	filled in	your A	nswer	Book)
PAPER ID: 1071	Roll No.				

B. Tech.

(SEM. IV) EXAMINATION, 2008-09 THEORY OF AUTOMATA & FORMAL LANGUAGES

Time: 3 Hours]

[Total Marks : 100

Note:

- (1) Attempt all questions.
- (2) All questions carry equal marks.

1 Attempt any four parts of the following:

5×4=20

- (a) Let $S=\{ab, bb\}$ and let $T=\{ab, bb, bbbb\}$, show that $S^*=T^*$
- (b) What do you mean by the Kleene closure of set A?
- (c) Construct a grammar for each of the following languages:

(i)
$$\left\{a^m b^m \mid m \ge 1\right\} \cup \left\{b^n a^n \mid n \ge 1\right\}$$

(ii)
$$\{a^l b^m c^n \mid l+m=n, l, m \ge 1\}$$

(d) Design a FA recognizing the language over {a,b,c, d} which shall accept only those strings in which no symbol appears in consecutive positions.

- (e) Find two different FAs M_1 and M_2 recognizing languages L_1 and L_2 respectively, such that the languages $L_1 \cup L_2$ and $L_1 L_2$ are the same
- (f) Show that every context-free language is contextsensitive.
- Attempt any four parts of the following: $5\times4=2$
 - (a) Using induction show that if for some state q and some string n, $\delta^*(q,n) = q$, then for every $n \ge 0$, $\delta^*(q,n^n) = q$.
 - (b) Construct an NFA which recognizes a set of strings containing three consecutive 0's and three consecutive 1's. Also correct this NFA into an equivalent DFA.
 - (c) Discuss the various application of FA.
 - (d) Construct a Moore machine that determines whether an input string contains an even or odd number of 1's. The machine should give I as output if an even number of 1's are in the string and 0 otherwise.
 - (e) Construct a DFA for the following language: $\begin{cases} a^m b^n \mid m \text{ is divisible by 2} \\ \text{and } n \text{ is divisible by 4} \end{cases}$
 - (f) Discuss the conversion of Moore to mealy machine with the help of an example.

- 3 Attempt any two parts of the following: 10×2=20
 - (a) Using pumping lemma, prove that the following languages are not regular

(i)
$$\{wo^n \mid w \in \{0, 1\}^* \land |w| = n\}$$

- (ii) $\left\{ww \mid we\left\{a,b\right\}^{*}\right\}$
- (b) Simplify the following grammar by eliminating uselsess symbols and useless production:

$$S \to a |aA|B|C, A \to aB|\varepsilon,$$

$$B \rightarrow Aa$$
, $C \rightarrow cCD$, $D \rightarrow dd$

Also find the Chomsky Normal form of the simplified grammar.

- (c) (i) Show that the CFG with productions. $S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS$ is ambiguous.
 - (ii) Use pumping lemma to prove that the following is not CFL: $\{a^n \ b^m \ a^n \ b^{n+m} \mid m, n \ge 0\}$
- 4 Attempt any two parts of the following: 10×2=20
 - (a) (i) Non-deterministic PDA is not equivalent deterministic PDA in terms of language recognition. Explain.
 - (ii) Covert the following grammar to a PDA that accepts the same language.

$$S \rightarrow OSI \mid A$$

$$A \rightarrow IAO |S| \varepsilon$$

(b) Cosntruct a PDA by empty stack which accepts the following:

$$\{a^m \cdot b^m \cdot c^n \mid m, n \ge 1\}$$

Also convert this PDA into an equivalent CFG.

(c) Construct a two-stack PDA for recognizing the following:

$$\{a^n b^n c^n d^n \mid n > 1\}$$

- 5 Attempt any two parts of following: 10×2=20
 - (a) What do you mean by unsolvable problem? Explain.
 - (b) Design a TM recognizing the following language:{a^m baⁿ ba^p ba^{m+n+p} | m,n,p>1}
 - (c) Design a 2-track TM that takes as input on track-1 aⁿ and leaves on track-2 the binary representation of n.