

B.Tech.

(SEM IV) EVEN SEMESTER THEORY EXAMINATION, 2009-2010
MATHEMATICS - III
Time: 3 Hours
Total Marks : 100

Note: (i) Attempt ALL questions.
(ii) Each question carries equal marks.

1. Attempt any four parts of the following :
(a) Show that the function $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find its harmonic.
(b) Using Cauchy's integral formula, evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$ where c is $|z|=3$.
(c) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in Laurent's series valid for the regions:
(i) $1<|z|<2$
(ii) $0<|z-1|<1$
(d) Using complex integration method, evaluate $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$.
(e) Use contour integration method to evaluate $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x, a>0$.
(f) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $y=x$ and $y=x^{2}$.
2. Attempt any four parts of the following :
(9) The equation $f(x)=(x-1)^{2}(x-3)^{2}$ has roots at $x=1$ and $x=3$. Which of the following methods can be applied to find all the roots?
(i) Bisection method
(ii) False - position method
(iii) Newton - Raphson method Justify your answer.
(b) Prove that the Newton Raphson method is second order convergent.
(c) Perform five iteration of false position method to compute the smallest positive soot of the equation $3 x+\sin x-e^{x}=0$.
(d) Obtain the value of $f(3.5)$ from the following data:

x	3	4	5	6	7
$f(x)$	3	6.6	15	22	35

(e) Use Newton's divided difference method to compute $f(5.5)$ from the following data:

x	0	1	4	5	6
$f(x)$	1	14	15	6	3

(f) Find the missing terms of the following data:

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
$f(x)$	6	$?$	10	20	$?$	15	5

3. Attempt any two parts of the following :
(a) Find f^{\prime} (1.1) and $f^{\prime \prime}$ (1.1) from the following table:

x	1.0	1.2	1.4	1.6	1.8	2.0
$f(x)$	0.0	0.128	0.554	1.296	2.432	4.000

(b) Derive the formula for Simpson's $3 / 8$ rule and find the value of the integral $\int_{0}^{1} \frac{d x}{1+x^{2}}$.
Taking 12 intervals.
(c) Using Runge - Kutta fourth order method to solve the following differential equation $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1.0$ at $x=0.2,0.4$.
4. Attempt any two parts of the following :
(a) Fit a relation $y=a x+\frac{b}{x}$ which satisfies the following data, using method of least squares:

x	1	2	3	4	5	6	7	8
y	5.4	6.2	8.2	10.3	12.6	14.8	17.2	19.5

(b) What do you mean by regression analysis, explain? If for two random variables,

Q x and y with the same mean, the two regression equations are $y=a x+b$ and $x=\alpha y+\beta$
show that $\frac{b}{\beta}=\frac{1-a}{1-\alpha}$.
Also find the common mean.
(c) Let the random variable X assume the value ' n ' with the probability law $p(\mathrm{X}=n)=p q^{n-1}, n=1,2,3 \ldots$
Find the moment generating function and hence mean and variance.
5. Attempt any two parts of the following:
(a) What is chi-square test? A survey of 320 families with 5 children show the following distribution :

Number of boys \& girls	5 boys 0 girls	4 boys 1 girl	3 boys 2 girls	2 boys	3 girls	1 boy
4 girls	0 boys	5 girls				
Number of families	18	56	110	88	40	8

(Given $x_{0.05}^{2}=11.1$ for 5 d.f.)
Test the hypothesis that male and female births äre equally probable.
(b) Distinguish between the np-chart, p-chart and etchart of quality control analysis. The average percentage of defectives in 27 samples of size 1500 each was found to be 13.7%. Construct p-chart and give your conclusion regarding quality control.
(c) In a distribution exactly normal, 7% of the items are under 35 and 89% are under 63. What are the mean and standard deviation of this distribution ?
(Note : Ask for the table of area under normal curve from c.s.)

