(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 0324 Roll No. \square

B.Tech.

(SEM.IV) THEORYEXAMINATION 2010-11 SIGNALS AND SYSTEMS

Time : 3 Hours
Total Marks : 100
Note :-(1). Attempt ALL questions. All questions carry equal marks.
(2) Be precise in your answer. No second answer book will be provided.

1. Attempt any FOUR parts of the following :- $\quad \mathbf{5} \times \mathbf{4}=\mathbf{2 0}$
(a) Define a continuous-time signal and show that the product of two odd signals is an even signal.
(b) Determine and sketch the even and odd components of the continuous-time signal $x(t)=e^{-t} u(t)$.
(c) Consider $x(t)=\cos 2 \pi f_{0} t$. Is it a power signal or energy signal ?
(d) Write down the expression for and plot the sinusoidal discrete-time sequence whose peak amplitude is 10

- and frequency is 100 Hz . The sampling frequency is 1000 samples per second.
(e) Define unit impulse function and also state at least three properties of it.
(f) Show whether $x(t)=\left\{\begin{aligned} A ; & 0<t<T_{0} \\ 0 ; & \text { otherwise }\end{aligned}\right.$ is an energy signal or power signal.

2. Attempt any FOUR parts of the following :- $\mathbf{5 \times 4 = 2 0}$
(a) State and prove the initial value theorem for a function $f(t)$.
(b) Using partial fraction expansion, find $f(t)$. If its unilateral Laplace Transfom $F(s)$ is given by

$$
\frac{2 s-1}{s^{2}+2 s+1}
$$

(c) Determine the energy contained in the signal

$$
x(t)=20 \sin 10 t
$$

(d) Show that the Z-transform of any anti-symmetric sequence has a zero at $z=1$.
(e) Find the unilateral Z-Transform of

$$
x(n)=\left[a^{n} \cos \omega_{0} n\right] u(n)
$$

(f) If $X(z)=\frac{z}{3 z^{2}-4 z+1}$, find $x(n), n \geq 0$, given that ROC of $X(z)$ is $|z|>1$.
3. Attempt any FOUR parts of the following :- $\quad \mathbf{5} \times \mathbf{4}=\mathbf{2 0}$
(a) : Determine and sketch spectrum of

$$
x(t)=10 \sin 2 \pi f_{0} t
$$

(b) Show that the convolution in time domain is same as product in frequency domain.
(c) Find the Fourier transform of $x(t)=\frac{1}{1+t^{2}}$.
(d) Compute the DTFT of

$$
x(n)=\left(a^{n} \cos \omega_{0} n\right) u(n) ; a<1
$$

(e) If $\mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=2 \pi \delta(\omega) ;-\pi<\omega<\pi$. Find $\mathrm{x}(\mathrm{n})$.
(f) State and prove the multiplication theorem for two discrete signals.
4. Attempt any TWO parts of the following :- $\quad \mathbf{1 0 \times 2}=\mathbf{2 0}$
(a) (i) A particular system has been modeled by an inputoutput relation

$$
Y(t)=a_{0}+a_{1} x(t)+a_{2} x^{2}(t)
$$

(ii) Is the system static or dynamic?
(iii) Is it linear? Justify your answer.
(iv) Show that an ideal differentiator which input $x(t)$ and output $y(t)$ related by $y(t)=\frac{d x(t)}{d t}$ is a linear time invariant system.
*(b) For the DT system described by the difference equation

$$
y(n)=0.6 y(n-1)-0.08 y(n-2)+x(n)
$$

determine :
(i) The unit-sample response sequence, $h(n)$,
(ii) The step-response sequence $g(n)$ and
(iii) Whether it is BIBO stable ?
(c) (i) Find the auto-correlation function and the Energy Spectral Density (ESD) of the signal $x(t)=e^{-t} u(t)$.
(ii) Given $x(t)=5 \cos t$ and $y(t)=2 e^{-t \mid t}$, find convolution $x(t) * y(t)$.
5. Attempt any TWO parts of the following :- $10 \times 2=20$
(a) A second-order DT system is described by the difference equation :

$$
y(n)-y(n-1)+0 \cdot 5 y(n-2)=x(n)
$$

Determine :-
(i) $\mathrm{H}(\mathrm{z})$, the system function,
(ii) $\mathrm{h}(\mathrm{n})$, the unit-sample response sequence and
(iii) transfer function $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} w}\right)$.

Also plot its magnitude response.
(b) Find the voltage transfer functions, $\mathrm{H}(\mathrm{S})$, of the following :-
(i) The L-section RC high pass filter.
(ii) The L-section LC low pass filter.
(c) Obtain canonical direct form, cascade and parallel realizations of the transfer function :

$$
H(s)=\frac{5 s^{3}}{s^{3}+6 s^{2}+11 s+6}
$$

