Printed Pages-4

TCS405

(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID = 1071
Roll No.

B. Tech.

(SEM. IV) THEORY EXAMINATION 2010-11 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time : 3 Hours

Total Marks: 100

- Note :- (1) Attempt ALL questions.
 - (2) All questions carry equal marks.
 - (3) Notations/Symbols/Abbreviations used have usual meaning.
 - (4) Make suitable assumptions, wherever required.
- 1. Attempt any two parts of the following :
 - (a) Define Nondeterministic finite automata (NFA). Design a deterministic finite automata (DFA) over $\Sigma = \{a, b\}$ with minimum number of states which accepts all the strings that ends with babb.
 - (b) Define Mealy machine. Convert the following Moore machine into equivalent Mealy machine :

Present	Next State		Output
State	Input 0	Input 1	
$\rightarrow q_0$	q ₀	q ₁	Y
, q ₁	q ₂	q ₃	Ν
q_2	q ₄	q ₀	N
q_3	q ₁	q_2	N
q_4	q ₃	q ₄	N

TCS405/RFW-21345

[Turn Over

1

Present	Next State		
State	Input 0	Input 1	
$\rightarrow q_0$	q ₁	q ₃	
q ₁	\mathbf{q}_{0}	q_3	
q ₂	q	q_4	
q ₃	q ₅	qs	

Write the steps for minimizing the states in a DFA. (c) ollowing DFA :

q, Given that q_1 and q_5 are final states.

 q_3

Attempt any four parts of the following : 2.

 q_4

q.

- (a) Write the regular expression for the following languages :
 - The set of all strings of 0's and 1's in which every 0 (i) is followed by 11.

 q_3

q.

- The set of all strings of 0's and 1's in which the (ii) number of 0's is even.
- Obtain the NFA without epsilon transition corresponding (b)to the following regular expression :

 $00(0^* + 1^*)^* 11.$

Obtain the regular expression for the following finite (c) automata having q₀ and q, as final states :

Present	Next State		
Sinte	Input a	Input b	
$\rightarrow q_0$	q ₀	q	
q _i	\mathbf{q}_0	9 ₂	
. q ₂	q ₀	q ₁	

TCS405/RFW-21345

- (d) Prove that if L and M are regular languages then intersection of L and M is also regular language.
- (e) Discuss the Chomsky hierarchy of the languages.
- (f) Prove that every language defined by a regular expression is also accepted by some finite automata.
- 3. Attempt any two parts of the following :
 - (a) State the pumping lemma for regular expressions. Use the pumping lemma to prove that the language L is not regular. L is defined as follows :

 $L = \{0^n \ 1^{2n} \mid n \text{ is non-negative integers}\}.$

(b) Convert the following grammar into Greibach Normal*** Form (GNF):

 $S \rightarrow AA \mid 0$ $A \rightarrow SS \mid 1$

(c) (i) What do you understand by ambiguous grammar ?
 Show that the following grammar is ambiguous :

 $S \rightarrow S + S | S * S | a$

 (ii) Simplify the following context free grammar to an equivalent context free grammar that do not have any useless symbol, null production and unit production :

 $S \rightarrow aSa \mid bSb \mid \in$

 $A \rightarrow aBb \mid bBa$

 $B \rightarrow aB | bB | \in$

S is the start symbol.

TCS405/RFW-21345

[Turn Over

4. Attempt any two parts of the following :

(a) Define Push Down Automata (PDA). Construct a PDA which accepts the language L given by :

 $L = \{a^m b^n m^n \mid m \text{ and } n \text{ are non-negative integers}\}.$

(b) Obtain a context free grammar that generates the langauge accepted (by final state) by the NPDA with following transitions :

 $\delta(q_0, a, Z) = \{(q_0, AZ)\}$ $\delta(q_0, a, A) = \{(q_0, A)\}$ $\delta(q_0, b, A) = \{(q_1, \epsilon)\}$ $\delta(q_1, \epsilon, Z) = \{(q_2, \epsilon)\}$

 q_0 is the initial state and q_2 is the final state.

 (c) (i) Construct a Push Down Automata that accepts the language generated by the grammar with following productions :

$$S \rightarrow aSA \mid a$$

 $A \rightarrow bB$

 $B \rightarrow b$

 Prove that context free languages are closed under star-closure.

5. Attempt any two parts of the following :

(a) Define Turing machine. Design a Turing machine that accepts the language L over {a, b, c} defined a follows :

 $L = \{wcw \mid w \in (a + b)^*\}.$

- (b) Discuss various variations of Turing machine.
- (c) (i) Write short notes on the halting problem of Turing machine.
 - (ii) Differentiate between recursive language and recursively enumerable language.

TCS405/RFW-21345

8 2.7

2000