(Following Paper ID and Roll No. to be filled in your Answer Book)

B. Tech.

(SEM. IV) THEORY EXAMINATION 2010-11 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours
Total Marks : 100
Note :- (1) Attempt ALL questions.
(2) All questions carry equal marks.
(3) Notations/Symbols/Abbreviations used have * : usual meaning.
(4) Make suitable assumptions, wherever required.

1. Altempt any two parts of the following :
(a) Define Nondeterministic finite automata (NFA). Design a deterministic finite automata (DFA) over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ with minimum number of states which accepts all the strings that ends with babb.
(b) Define Mealy machine. Convert the following Moore machine into equivalent Mealy machine :

Present	Next State		Output
State	Input 0	Input 1	
$\rightarrow \mathrm{q}_{0}$	q_{0}	q_{1}	Y
q_{1}	q_{2}	q_{3}	N
q_{2}	q_{4}	q_{0}	N
q_{3}	q_{1}	q_{2}	N
q_{4}	q_{3}	q_{4}	N

(c) Write the steps for minimizing the states in a DFA. Minimize the number of states in the following DFA:

Present State	Next State	
	Input 0	Input 1
$\rightarrow \mathrm{q}_{0}$	q_{1}	q_{3}
q_{1}	q_{0}	q_{3}
q_{2}	q_{1}	q_{4}
q_{3}	q_{5}	q_{5}
q_{4}	q_{3}	q_{3}
q_{5}	q_{5}	q_{5}

Given that q_{3} and q_{5} are final states.
2. Attempt any four parts of the following :
(a) Write the regular expression for the following languages:
(i) The set of all strings of 0 's and 1 's in which every 0 is followed by 11 .
(ii) The set of all strings of 0's and 1 's in which the number of 0 's is even.
(b) Obtain the NFA without epsilon transition corresponding to the following regular expression :

$$
00\left(0^{*}+1^{*}\right)^{*} 11
$$

(c) Obtain the regular expression for the following finite auromata having c_{0} and q_{2} as final states:

Present State	Next State	
	Tripat a	Input b
$\rightarrow \mathrm{q}_{0}$	q_{0}	q_{1}
q_{1}	9	q_{2}
O_{2}	q_{0}	q_{1}

(d) Prove that if L and M are regular languages then intersection of L and M is also regular langauge.
(e) Discuss the Chomsky hierarchy of the languages.
(f) Prove that every language defined by a regular expression is also accepted by some finite automata.
3. Attempt any two parts of the following :
(a) State the pumping lemma for regular expressions. Use the pumping lemma to prove that the language L is not regular. L is defined as follows :

$$
\mathrm{L}=\left\{0^{\mathrm{n}} 1^{2 \mathrm{n}} \mid \mathrm{n} \text { is non-negative integers }\right\} .
$$

(b) Convert the following grammar into Greibach Normal **Form (GNF) :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AA} \mid 0 \\
& \mathrm{~A} \rightarrow \mathrm{SS} \mid 1
\end{aligned}
$$

(c) (i) What do you understand by ambiguous grammar ? Show that the following grammar is ambiguous:

$$
S \rightarrow S+S|S * S| a
$$

(ii) Simplify the following context free grammar to an equivalent context free grammar that do not have any useless symbol, null production and unit production:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}| \epsilon \\
& \mathrm{A} \rightarrow \mathrm{aBb} \mid \mathrm{bBa} \\
& \mathrm{~B} \rightarrow \mathrm{aB}|\mathrm{bB}| \in
\end{aligned}
$$

S is the start symbol.
4. Attempt any two parts of the following :
(a) Define Push Down Automata (PDA). Construct a PDA which accepts the language L given by:
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mathrm{m}^{\mathrm{n}} \mid\right.$ in and n are non-negative integers $\}$.
(b) Obtain a context free grammar that generates the langauge accepted (by final state) by the NPDA with following transitions:

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{Z}\right)=\left\{\left(\mathrm{q}_{0}, A Z\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, a, A\right)=\left\{\left(\mathrm{q}_{0}, A\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, b, A\right)=\left\{\left(\mathrm{q}_{1}, \in\right)\right\} \\
& \delta\left(\mathrm{q}_{1}, \in, Z\right)=\left\{\left(\mathrm{q}_{2}, \in\right)\right\}
\end{aligned}
$$

q_{0} is the initial state and q_{2} is the final state.
(c) (i) Construct a Push Down Automata that accepts the language generated by the grammar with following productions:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSA} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{bB} \\
& \mathrm{~B} \rightarrow \mathrm{~b}
\end{aligned}
$$

(ii) Prove that context free languages are closed under star-closure.
5. Attempt any two parts of the following :
(a) Define Turing machine. Design a Turing machine that accepts the language L over $\{a, b, c\}$ defined a follows :

$$
L=\left\{w c w \mid w \in(a+b)^{*}\right\} .
$$

(b) Discuss various variations of Turing machine.
(c) (i) Write short notes on the halting problem of Turing machine.
(ii) Differentiate between recursive language and recursively enumerable language.

