Trincou Tugob o						- 1 A		In	
(Following Paper ID a	nd Roll No	. to b	e fill	ed in	your	Ansv	ver B	800	k)
DADED ID . 2050	Doll No.						1	T	100

B. Tech.

(SEM. IV) THEORY EXAMINATION 2010-11 ENERGY CONVERSION

Time : 3 Hours

Printed Pages_3

Total Marks : 100

TEF406

Note : Attempt all the questions. All questions carry equal marks.

- 1. Attempt any two parts of the following : $(2 \times 10 = 20)$
 - (a) A pole, 3-phase, 50 Hz, 2.3 kV synchronous machine has 42 slots. Each slot has two conductors in a double layer winding. The Coil pitch is 17 slots. Each phase winding has two parallel paths. Calculate the flux/pole required to generate a phase voltage of 2300/ √3V.
 - (b) Explain the rotating magnetic field concepts for rotating machines.
 - (c) Derive emf equation for an alternator. Explain clearly the meaning of
 - (i) Distribution factor and

(ii) Coil span factor.

Give expression for them.

- 2. Attempt any two parts of the following : (2×10=20)
 - (a) A 220 V D.C. shunt motor draws a no-load armature current of 2.5 A when running 1400 rpm. Determine its speed when taking an armature current of 60 A, if armature

TEE406/RFW-21196

[Turn Over

reaction weakens the flux by 3 percent. Take armature \sim resistance = 0.2 Ω .

- (b) Derive an expression for the torque of a DC motor. Also differentiate between the generator action and motor action of a DC machine.
- (c) Discuss the application of shunt, series and compound motors.
- 3. Attempt any two parts of the following : $(2 \times 10 = 20)$
 - (a) What are V-curves ? How are they determined experimentally?
 - (b) (i) Draw equivalent circuit of a 3-phase induction motor.
 - (ii) A 12 pole, 3 phase alternator is coupled to an engine running at 500 rpm. It supplies a 3-phase induction motor having a full -load speed of 1440 rpm. Find the percentage slip and number of poles of motor.
 - (c) Discuss briefly the following :
 - (i) Crawling
 - (ii) Cogging.
- 4. Attempt any four parts of the following: $(4 \times 5 = 20)$
 - (a) State the difference between an SCR and TRIAC, also discuss common methods of turning off of a thyristor.
 - (b) Write short notes on :
 - (i) IGBT
 - (ii) power MOSFET
 - (iii) GTO

TEE406/RFW-21196

- (c) Define the following keeping in mind rectification :
 - (i) Form Factor of output voltage
 - (ii) Ripple factor of output voltage
 - (iii) Transformer utilization factor
 - (iv) Harmonic factor
 - (v) Displacement factor
 - (vi) Crest factor.
- (d) A three phase bridge rectifier is supplied from a star connected supply having 440 V line value at 50 Hz frequency. The average load current being 100A. Find the load resistance and load voltage.
- (e) Why half wave rectifiers are not much used in industries ?** What is its possible effective application in industry ?
- 5. Attempt any two parts of the following : $(2 \times 10 = 20)$
 - (a) How is it possible to construct a transistorised three phase bridge inverter using six transistors ? Describe the operation for both 180° mode of conduction. Why this inverter is called quasi-square wave inverter ?
 - (b) Draw the schematic of a three phase current source inverter and describe its operation.
 - (c) How inverters can be used as voltage controller of rotor circuit for a three phase wound rotor induction motor ?