rinted Pages : 2	• EC540
(Following Paper ID and D	Roll No. to be filled in your Answer Book)
PAPER ID: 0112	Roll No.

B.Tech. (SEMESTER-IV) THEORY EXAMINATION, 2011-12

THEORY OF AUTOMATA & FORMAL LANGUAGES

Time : 3 Hours]

Note: Attempt all Section as directed.

Section - A

Attempt all questions. All questions carry equal marks : 1.

- Define deterministic finite automaton. (a)
- State Mxhill-Nerode theorem. (b)
- Find a regular expression corresponding to the language of all strings over the (c) alphabet {0, 1} that contains at least two 0's.
- Differentiate between Mealy machine and Moore machine. (d)
- Show that the context-free gramma G given by productions $S \rightarrow SBS/a, B \rightarrow b$, is (e)ambiguous.
- What do you mean by inherent ambiguous CFL? (f)
- Compare PDA with FA. (g)
- What do you mean by instantaneous description of PDA? (h)
- When a language is said to be recursive or recursively enumerable ? (i)
- What are the ways of representations of TMs ? (i)

Section - B

 $3 \times 10 = 30$

- Attempt any three parts. 2.
 - Design a Mealy machine that accepts binary string divisible by 3. (a)
 - Construct an NFA without E-mores corresponding to the following NFA. (b)

1

 $2 \times 10 = 20$

[Total Marks : 100

- (c) Show that the language $\{0^n 1^n 2^n | n \ge 1\}$ is not a context free language.
- (d) Construct PDA by empty stack which accepts the following : $\{a^m b^m c^n | m, n \ge 1\}$
- (e) For $\Sigma = \{a, b\}$ design a TM that accepts $L = \{a^n b^n | n \ge 1\}$.

Section - C

Attempt all questions.

 $5 \times 10 = 50$

3. Prove that if a language L is accepted by an NFA then there is a DFA that accepts L.

OR ·

Prove that if L is accepted by an NFA with \in -transitions, then L is accepted by an NFA without \in -transitions.

4. Find the regular expression corresponding to the following Finite Automaton :

Show that $L = \{ ww | w \in \{a, b\}^* \}$ is not regular.

5. Construct a PDA M equivalent to the grammar with the following productions :

 $S \rightarrow aAA$

 $A \rightarrow bS | aS | a$

Also check whether the string abaaaa is in N(M) or not.

OR

Design 2-stack PDA for language $L = \{a^n b^n c_n^n | n > 0\}.$

6. Convert the following grammar to GNF :

 $S \rightarrow ABA \neq AA | \in B \rightarrow bB | \in B$

OR

Prove that if L_1 and L_2 are two CFLs then $L_1 \cap L_2$ may or may not be CFL.

- 7. Write short notes on any two of the following :
 - (a) Universal TM
 - (b) Halting Problem
 - (c) Church's Thesis