(Following Paper ID and Roll No. to be filled in your Answer Book)

## PAPER ID : 0112

Roll No.


## B.Tech.

(SEMESTER-IV) THEORY EXAMINATION, 2011-12

## THEORY OF AUTOMATA \& FORMAL LANGUAGES

Time : 3 Hours ]
[ Total Marks : 100

Note: Attempt all Section as directed.

## Section - A

1. Attempt all questions. All questions carry equal marks : $\quad \mathbf{2 \times 1 0}=\mathbf{2 0}$
(a) Define deterministic finite automaton.
(b) State Mxhill-Nerode theorem.
(c) Find a regular expression corresponding to the language of all strings over the alphabet $\{0,1\}$ that contains at least two 0 's.
(d) Differentiate between Mealy machine and Moore machine.
(e) Show that the context-free gramma $G$ given by productions $S \rightarrow S B S / a, B \rightarrow b$, is ambiguous.
(f) What do you mean by inherent ambiguous CFL ?
(g) Compare PDA with FA.
(h) What do you mean by instantaneous description of PDA ?
(i) When a language is said to be recursive or recursively enumerable?
(j) What are the ways of representations of TMs?
Section-B
2. Attempt any three parts.

$$
3 \times 10=30
$$

(a) Design a Mealy machine that accepts binary string divisible by 3 .
(b) Construct an NFA without E-mores corresponding to the following NFA.

(c) Show that the language $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$ is not a context free language.
(d) Construct PDA by empty stack which accepts the following:
$\left\{a^{m} b^{m} c^{n} \mid m, n \geq 1\right\}$
(e) For $\Sigma=\{a, b\}$ design a TM that accepts $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.

## Section-C

Attempt all questions.

$$
5 \times 10=50
$$

3. Prove that if a language $L$ is accepted by an NFA then there is a DFA that accepts $L$.

## OR.

Prove that if $L$ is accepted by an NFA with $\in$-transitions, then $L$ is accepted by an NFA without $\in$-transitions.
4. Find the regular expression corresponding to the following Finite Automaton :


Show that $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is not regular.
5. Construct a PDA M equivalent to the grammar with the following productions :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aAA} \\
& \mathrm{~A} \rightarrow \mathrm{bS}|\mathrm{aS}| \mathrm{a}
\end{aligned}
$$

Also check whether the string abaaaa is in $\mathrm{N}(\mathrm{M})$ or not.

## OR

Design 2-stack PDA for language
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$.
6. Convert the following grammar to GNF :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ABA} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \mid \epsilon \\
& \mathrm{B} \rightarrow \mathrm{bB} \mid \epsilon
\end{aligned}
$$

## OR

Prove that if $L_{1}$ and $L_{2}$ are two CFLs then $L_{1} \cap L_{2}$ may or may not be CFL.
7. Write short notes on any two of the following:
(a) Universal TM
(b) Halting Problem
(c) Church's Thesis

