(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPIR ID: 0321

Roll No. \square

B.Tech.

(SEMESTER-IV) THEORY EXAMINATION, 2011-12

ELECTRONIC CIRCUITS

Time : 3 Hours]
[Total Marks : 100

Note: Attempt questions from all sections. Assume missing data if any.
Section - A

1. Answer all parts.
(a) What is the minimum number of terminals required by a single Op-Amp ? What is the minimum number of terminals required on an integrated-circuit package containing four Op-Amps ?
(b) Design a simple current divider that will reduce the current provided to a $1 \mathrm{~K} \Omega$ load to 20% of that available from the source.
(c) Design an inverting closed loop amplifier having a gain of -10 and an input resistance of $100 \mathrm{~K} \Omega$. Calculate values of R_{1} and R_{2}.
(d) Define full-power band-width in an Op-Amp.
(e) For NMOS transistor, write the drain current expression in Triode region and Saturation region.
(f) Draw a large-signal equivalent circuit model of the n -channel MOSFET in saturation, incorporating the output resistance.
(g) Calculate β for two transistors for which $\alpha=0.99$ and 0.98 .
(h) A BJT having $\beta=100$ is biased at a dc collector current of 1 mA . Find the value of g_{m} and r_{e}.
(i) Define the input common - mode range of a Differential Amplifier.
(j) Define Transconductance and Trans-resistance Amplifiers.

Section-B

2. Attempt any three parts :

$$
3 \times 10=30
$$

(a) (i) Consider the basic differential amplifier circuit with $R_{1}=R_{3}=2 \mathrm{k} \Omega$ and $R_{2}=R_{4}=200 \mathrm{k} \Omega$. Find the value of $A_{d}, R_{i d}$, and R_{0}.
(ii) An Op-Amp having a slew-rate of $20 \mathrm{~V} / \mu \mathrm{s}$ is to be used in the unity-gain follower configuration, with input pulse that rises from 0 to 3 V . What is the shortest pulse that can be used while ensuring full-amplitude output?
(b) A transistor amplifier is fed with a signal source having an open-circuit voltage $v_{s i g}$ of 10 mV and internal resistance $R_{\text {sig }}$ of $100 \mathrm{k} \Omega$. The voltage v_{i} at the amplifier input and output voltage v_{0} are measured both without and with load resistance $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to the amplifier output. The measured results are as follows :

	$\mathrm{v}_{\mathrm{i}}(\mathrm{mV})$	$\mathrm{v}_{0}(\mathrm{mV})$
Without R_{L}	9	90
With R_{L} connected	8	70

Find all the amplifier parameters.
(c) Draw the circuit diagram of single stage CE amplifier, implement hybrid- π model and T-model for it and calculate expressions for i_{e}, g_{m} and i_{b}.
(d) Draw the NMOS differential amplifier with a common-mode input signal and calculate the Common Mode Gain and CMRR. Also explain the effect of R_{D} mismatch on CMRR.
(e) Design a series - series feedback amplifier and calculate expressions for $A_{f}, R_{\text {of }}$ and R_{if}

Section-C

Attempt all parts.
3. Attempt any two parts.
(a) A MOSFET is to operate at $\mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$ and is to have $\mathrm{g}_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}$. If $\mathrm{k}_{\mathrm{n}}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$, find the required W/L ratio and the overdrive voltage.
(b) Draw the high-frequency equivalent circuit model for the MOSFET and list all MOSFET internal capacitances.
(c) For the CS amplifier, determine its low frequency transfer function.
4. Attempt any two parts.
(a) Draw the circuit diagram of biasing the MOSFET using a constant-current source and calculate the expression for I in terms of $\mathrm{I}_{\mathrm{REF}}$.
(b) Discuss the various internal capacitances in detail for BJT.
(c) Draw the circuit diagram of CB amplifier and calculate expression for shortcircuit current gain with T-model.
5. Attempt any two parts.
(a) Consider a CE circuit using a BJT having $\mathrm{I}_{\mathrm{S}}=10^{-15} \mathrm{~A}$, a collector resistance $\mathrm{R}_{\mathrm{C}}=6.8 \mathrm{k} \Omega$, and a power supply $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$.
(i) Determine the value of the bias voltage V_{BE} required to operate the transistor at $\mathrm{V}_{\mathrm{CE}}=3.2 \mathrm{~V}$. What is the corresponding value of I_{C} ?
(ii) Find the voltage gain A_{V} at this bias point.
(b) Explain how to operate the BJT as a switch.
(c) Calculate the $\mathrm{R}_{\text {in }}$ or $\mathrm{R}_{\text {out }}$ for the CC amplifier.
6. Attempt any two parts.
(a) Draw the circuit diagram of BJT differential pair and explain its large-signal operation.
(b) Calculate the transconductance G_{m} for the active-loaded MOS differential pair.
(c) For the active-loaded BJT differential amplifier let $\mathrm{I}=0.8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{mV}$ and $\beta=100$ find $G_{m} \& R_{0}$.
7. Attempt any two parts.
(a) Explain how Negative feedback affects Gain, Band-width \& Noise.
(b) Draw the circuit diagram of a Wien-bridge oscillator and derive an expression for the frequency of oscillations.
(c) For the Hartley Oscillator, derive an expression for the frequency of oscillation.

