(Following Paper ID and Roll No. to be filled in your Answer Book)

Roll No.

B.Tech.

(SEMESTER-IV) THEORY EXAMINATION, 2011-12

MATHEMATICS - III

Time : 3 Hours]
[Total Marks : 100

Note: Attempt questions from each Section as indicated. The symbols have their usual meaning. Provide statistical tables which are required by students.

Section-A

Attempt all parts of this question. Each part carries 2 marks :

$$
10 \times 2=20
$$

1, (a) If $f(z)=u+i v$ is analytic, then show that the family of curves $u(x, y)=c_{1}$ and $v(x, y)=\mathrm{c}_{2}$ are mutually orthogonal.
(b) Define removable and essential singular points with example.
(c) Define the coefficients of Skewness and Kurtosis.
(d) What is the total probability theorem ?
(e) Explain in brief Null and Alternative hypotheses.
(f) Define coefficient of contingency.
(g) Isolate the roots of the equation $x^{3}-4 x+1=0$.
(h) Verify that $\nabla \mathrm{E} \equiv \Delta$.
(i) What do you mean by numerical differentiation ? Explain in brief.
(j) Let $\mathrm{I}=\int^{x_{3}} \mathrm{f}(x) \mathrm{d} x$, where $\mathrm{f}(x)$ is a third degree polynomial. Write the formula you x_{0}
will like to use to find the approximate value of I. It is given that the data are equispaced.

Section - B

2. Attempt any three parts of this question.

$$
3 \times 10=30
$$

(a) Verify Cauchy's theorem by integrating \exp (iz) along the boundary of the triangle with vertices at the points $1+i,-1+i$ and $-1-i$.
(b) Find all four central moments and dicuss skewness and kurtosis and also Karl Pearson skewness for the frequency distribution given in the following table:

Range of expenditure (in ₹ 100 per month)	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$
No. of families	38	292	389	212	69

(c) A manufacturer claimed that at least 95% of the equipments which he supplied to a factory conformed to the specifications. An examination of a sample of 200 pieces of equipments revealed that 18 were faulty. Test this claim at a significant level of (i) 0.05 and (ii) 0.01 .
(d) Show that the Newton-Raphson Method has second order convergence.
(e) Solve the following system using Crout's decomposition method:
$3 x-y+2 z=12$
$x+2 y+3 z=11$
$2 x-2 y-z=2$

Section-C

All questions of this section are compulsory. Attempt any two parts from each question.
3. (a) Determine p such that the function
$\mathrm{f}(\mathrm{z})=\frac{1}{2} \log \left(x^{2}+\mathrm{y}^{2}\right)+\mathrm{i} \tan ^{-1}\left(\frac{\mathrm{p} x}{\mathrm{y}}\right)$ is an analytic function. Also find $\mathrm{f}^{\prime}(\mathrm{z})$.
(b) Find Laurent series expansion of
$f(z)=\frac{4 z-1}{z^{4}-1}$
about the point $\mathrm{z}=0$.
(c) Evaluate $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$.
4. (a) Fit a parabola of the form $y=a+b x+c x^{2}$ to the data

\boldsymbol{x}	1	2	3	4
\mathbf{y}	1.7	1.8	2.3	3.2

by the method of least squares.
(b) If θ is the acute angle between the two regression lines in case of two variables x and y, show that
$\tan \theta=\frac{1-\mathrm{r}^{2}}{\mathrm{r}} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}}$,
where $\mathrm{r}, \sigma_{x}, \sigma_{y}$ have their usual meanings. Explain the significance of the formula when $r=0$ and $r= \pm 1$.
(c) Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys (b) 5 girls (c) either 2 or 3 boys? Assume equal probabilities for boys and girls.
5. (a) Fit a binomial distribution to the data given in the following table :

\boldsymbol{x}	0	1	2	3	4
\mathbf{f}	24	41	28	5	2

(b) The number of scooter accidents per month during a year in a certain town were as follows :
$12,8,20,2,14,10,15,6,9,4,7,13$
Are these frequencies in agreement with the belief that the accident conditions were the same during the whole year ?
(c) $\overline{\mathrm{X}}$ and R values for 10 sub-groups of 5 readings are given in the following table. Determine the control limits for $\overline{\mathrm{X}}$ and R charts for future use, eliminating all the out of control points :

Sub-group numbers	1	2	3	4	5	6	7
$\overline{\mathbf{X}}$	34.0	31.6	30.8	33.0	35.0	32.2	33.0
\mathbf{R}	4	4	2	3	5	2	5

Sub-group numbers	8	9	10
$\overline{\mathbf{X}}$	32.6	33.8	37.8
\mathbf{R}	13	19	6

6. (a) Find the root of $2 \sin x-2 x+1=0$ correct to five significant digits with initial approximation $x_{0}=1.0$.
(b) Estimate the values of a and b in the following table:

X	10	15	20	25	30	35
$\mathbf{f}(\boldsymbol{x})$	43	a	29	32	b	77

(c) The population of a town in decennial census is as under. Estimate the population for the year 1955 :

Year	1921	1931	1941	1951	1961
Population (in lac)	46	66	81	93	101

7. (a) Find $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{J}_{0}\right)$ at $x=0.1$ from the following table :

\boldsymbol{x}	0.0	0.1	0.2	0.3	0.4
$\mathbf{J}_{\mathbf{0}}(\boldsymbol{x})$	1.0000	0.9975	0.9900	0.9776	0.9604

Also find $\frac{\mathrm{d}^{2}}{\mathrm{dx}}\left(\mathrm{J}_{0}\right)$ at $x=0.1$.
(b) Evaluate the integral
$\int_{0}^{2 \pi} e^{-t} \sin (10 t) d t$
using Simpson's $3 / 8$ rule.
(c) Apply Picard's method to find the solution of the initial value problem

$$
\frac{d y}{d x}=y-x, y(0)=2
$$

Show that the iterative solution approaches the exact solution.

