(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 0324
Roll No. \square

B. Tech

(SEMESTER-IV) THEORY EXAMINATION, 2011-12
SIGNALS \& SYSTEMS
[Total Marks : 100
Time : 3 Hours]

Note: Answer all the Sections.
Section-A

$$
10 \times 2=20
$$

1. Attempt all the parts.
(a) Distinguish between Symmetric and Non-Symmetric signals with suitable example.
(b) Determine whether the following signal is periodic or not, if so find its period.

$$
x(\mathrm{t})=\cos \mathrm{t}+\sin \sqrt{2 \mathrm{t}}
$$

(c) Explain BIBO and Time Invariance properties of the system.
(d) Prove the frequency-shifting property of Fourier Transform.
(e) Find the Nyquist-rate for the following signal
$x(\mathrm{t})=[1+0.1 \sin (200 \pi \mathrm{t})] \cos (2000 \pi \mathrm{t})$
(f) Sketch

$$
Z(t)=r(t+2)-r(t+1)-r(t-1)+r(t-2)
$$

(g) What do you mean by Group Delay?
(h) Establish the relationship between convolution and correlation function for CT-system.
(i) Find the total energy and total-power contained in the unit-step signal $u(t)$.
(j) Find the impulse-response of the system having gain.

Section-B

2. Attempt any THREE parts :
(a) An LTI system has impulse response $h(n)=[u(n)-u(n-4)]$. Find the output of the system if the input $x(n)=[u(n+10)-2 u(n+5)+(n-6)]$. Sketch the output.
(b) Use the properties of the Fourier Transform to show by induction that the Fourier Transform of

$$
\begin{aligned}
& \quad x(\mathrm{t})=\frac{\mathrm{t}^{\mathrm{n}-1}}{(\mathrm{n}-1)!} \mathrm{e}^{-\alpha \mathrm{t}} u(\mathrm{t}), \alpha>0 \\
& \text { is }\left(\frac{1}{(\mathrm{a}+\mathrm{jw})^{n}}\right)
\end{aligned}
$$

(c) Show that the Fourier Transform of a train of impulses of unit height separated by T secs is also a train of impulses of height $\omega_{0}=2 \pi / \mathrm{T}$ separated by $\omega_{0}=2 \pi / \mathrm{T}$ sec.
(d) Determine the DTFT of the following signals :
(i) $\quad x(\mathrm{n})=\mathrm{a}^{|\mathrm{n}-2|},|\mathrm{a}|<1$
(ii) $\quad x(\mathrm{n})=\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n}-2)$
(iii) $x(n)=2^{n}[u(n)-u(n-6)]$
(e) (i) Prove the time - shift property of uni-lateral Z - Transform.
(ii) State and prove initial value theorem for Z - Transform.

Section-C

Attempt all parts.

$$
5 \times 10=50
$$

3. Attempt any two parts :
(a) Explain causal and anti-causal signals with suitable examples.
(b) Sketch $\delta[\mathrm{n}]=\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-1)$
(c) Derive the expression for convolution integral.
4. Attempt any one part.
(a) Evaluate the continuous time convolution integral

$$
y(t)=e^{-2 t} u(t) * U(t+2)
$$

(b) Determine whether each of the systems given below is linear, time invariant, causal and memory.
(i) $y(t)=\cos (x(t))$
(ii) $\mathrm{y}(\mathrm{n})=2 x(\mathrm{n}) \mathrm{u}(\mathrm{n})$
(iii) $\mathrm{y}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm{e}^{-\mathrm{t}} x(\mathrm{t})\right\}$
5. Attempt any one part.
(a) Explain the following properties of the Laplace Transform.
(i) Linearity
(ii) Time - Shifting
(iii) Time - Scaling
(iv) Conjugation
(b) Determine the Unilateral Laplace Transform of each of the following signals and specify the corresponding regions of convergence.
(i) $x(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t}+1)$
(ii) $x(\mathrm{t})=\delta(\mathrm{t}+1)+\delta(\mathrm{t})+\mathrm{e}^{-2(\mathrm{t}+3)} \mathrm{u}(\mathrm{t}+1)$
(iii) $x(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})+\mathrm{e}^{-4 \mathrm{t}} \mathrm{u}(\mathrm{t})$
6. Attempt any one part.
(a) Determine the Z-Transform for the signal $x[\mathrm{n}]$ given below. Sketch the pole-zero plot and indicate the region of convergence.

$$
x[\mathrm{n}]=7\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]-6\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]
$$

(b) A right sided sequence $x[\mathrm{n}]$ has Z - Transform

$$
X[z]=\frac{3 z^{-10}+z^{-7}-5 z^{-2}+4 z^{-1}+1}{z^{-10}-5 z^{-7}+z^{-3}}
$$

Determine $x[\mathrm{n}]$ for $\mathrm{n}<0$.
7. Attempt any two parts.
(a) Draw a block representation for the causal LTI system with system function

$$
H(z)=\frac{1}{1-\frac{1}{4} z^{-1}}
$$

(b) Explain uni-lateral Z-Transform.
(c) Find the step-response of the RC - High Pass Filter.

