Printed Pages : 4	EAS401
(Following Paper ID and	Roll No. to be filled in your Answer Book)
PAPER ID: 3987	Roll No.

B.Tech. (SEMESTER-IV) THEORY EXAMINATION, 2012-13 MATHEMATICS – III

Time : 3 Hours]

[Total Marks: 100

 $10 \times 2 = 20$

Note: Attempt questions from each section as indicated. The symbols have their usual meaning.

SECTION – A

- 1. All parts of this question are compulsory :
 - (a) Find the constants a, b and c such that the function $f(z) = -x^2 + xy + y^2 + i(ax^2 + bxy + y^2)$ is analytic.
 - (b) Evaluate the integral $\int_{C} \frac{e^{iz}}{z^3} dz$, where C : |z| = 1.
 - (c) The first-four central moments of a distribution are 0, 2.5, 0.7 and 18.75. Comment on the kurtosis of the distribution.
 - (d) The equations of two lines of regression are 3x + 12y = 19 and 9x + 3y = 46. Find the mean of x and the mean of y.
 - (e) Enlist the methods by which Trend values can be determined.
 - (f) Find the moment generating function of Poisson distribution.
 - (g) Show that $hD \equiv -\sinh^{-1}(\mu\delta)$.

3987

1

- (h) Find the value of $\Delta^2(ab^{cx})$.
- (i) Show that $y' = \frac{1}{h} \left[\Delta y \frac{1}{2} \Delta^2 y + \frac{1}{3} \Delta^3 y \frac{1}{4} \Delta^4 y + ... \right]$

(j) Calculate the value of
$$\int_{1}^{3.2} \log_e x \, dx$$
 by Trapezoidal rule.

SECTION – B

2. Attempt any three parts :

 $3 \times 10 = 30$

- (a) Using the method of contour integration, evaluate $\int_{a}^{b} \frac{dx}{(x^2 + a^2)^2}$.
- (b) Find the multiple linear regression of x_1 on x_2 and x_3 from the data relating to three variables :

<i>x</i> ₁	4	6	7	9	13	15
<i>x</i> ₂	15	12	8	6	4	3
<i>x</i> ₃	30	24	20	14	10	4

- (c) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.
- (d) Perform four iterations of the Newton-Raphson method to obtain the approximate value of $(17)^{\frac{1}{3}}$ starting with initial approximation $x_0 = 2$.
- (e) Find the value of y(1.1), using Runge-kutta method of fourth order, given that $\frac{dy}{dx} = y^2 + xy$, y(1) = 1.0, take h = 0.05.

3987

SECTION – C

Note : Attempt any two parts from each question.

3. (a) Using Cauchy's integral formula, evaluate

$$\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-3)} dz$$

where C : |z| = 2.

(b) Prove that
$$\cosh\left(z + \frac{1}{z}\right) = a_0 + \sum_{n=1}^{\infty} a_n \left(z^n + \frac{1}{z^n}\right)$$
,
where $a_n = \frac{1}{2\pi} \int_{0}^{2\pi} \cos n\theta \cdot \cosh(2\cos\theta) d\theta$.

(c) State and prove Cauchy's Residue Theorem.

(a) Find the least squares fit of the form $y = a + bx^2$ to the following data :

x	- 1	0.	1	2
у	2	5	3	0

- (b) Show that the regression co-efficients are independent of the change of origin but not of scale.
- (c) Find the moment generating function for triangular distribution defined by

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2-x, & 1 \le x \le 2 \end{cases}$$

5. (a) If the variance of the Poisson distribution is 2, find the probabilities for r = 1, 2, 3and 4 from the recurrence relation of the Poisson distribution. Also find $P(r \ge 4)$.

(b) Given the following information in the usual notations :

 $n_1 = 7$, $n_2 = 6$, $S_1^2 = 6.21$, $S_2^2 = 5.23$, $\overline{x} = 30$ and $\overline{y} = 28$.

Test the hypothesis that the two samples have come from population having equal means.

3987

4.

P.T.O.

 $5 \times 10 = 50$

(c) 100 students of an engineering institute obtained the following grades in Mathematics paper :

Grade	А	В	C	D	E	Total
Frequency	15	17	30	22	16	100

Using χ^2 -test, examine the hypothesis that the distribution of grades is uniform.

6.

(a), Find the missing term in the table :

x	2	3	4	5	6
$\mathbf{f}(x)$	45.0	49.2	54.1	?	67.4

- (b) Show that the Regula-Falsi Method has linear rate of convergence.
- (c) Given the data f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4. Find the value of f(6) and also the value of x for which f(x) is maximum or minimum.

7. (a) Find the derivative of f(x) at x = 0.4 from the following table :

x	0.1	0.2	0.3	0.4
f(x)	1.10517	1.22140	1.34986	1.49182

(b) Use Picard's method to approximate the value of y when x = 0.1 given that y=1when x = 0 and $\frac{dy}{dx} = 3x + y^2$.

(c) Solve the system :
$$x_1 + x_2 + x_3 = 1$$
,

$$3x_1 + x_2 - 3x_3 = 5$$

$$x_1 - 2x_2 - 5x_3 = 10$$

by Crout's method.

3987