(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 3987

B.Tech.

(SEMESTER-IV) THEORY EXAMINATION, 2012-13
MATHEMATICS - III
Time : 3 Hours]
[Total Marks : 100

Note: Attempt questions from each section as indicated. The symbols have their usual meaning.

SECTION - A

1. All parts of this question are compulsory :
(a) Find the constants a, b and c such that the function $\mathrm{f}(\mathrm{z})=-x^{2}+x y+y^{2}+$ $\mathrm{i}\left(a x^{2}+b x y+y^{2}\right)$ is analytic.
(b) Evaluate the integral $\int_{C} \frac{e^{i z}}{z^{3}} d z$, where $C:|z|=1$.
(c) The first-four central moments of a distribution are $0,2.5,0.7$ and 18.75. Comment on the kurtosis of the distribution.
(d) The equations of two lines of regression are $3 x+12 y=19$ and $9 x+3 y=46$. Find the mean of x and the mean of y.
(e) Enlist the methods by which Trend values can be determined.
(f) Find the moment generating function of Poisson distribution.
(g) Show that $\mathrm{hD} \equiv-\sinh ^{-1}(\mu \delta)$.
(h) Find the value of $\Delta^{2}\left(a b^{c x}\right)$.
(i) Show that $y^{\prime}=\frac{1}{h}\left[\Delta y-\frac{1}{2} \Delta^{2} y+\frac{1}{3} \Delta^{3} y-\frac{1}{4} \Delta^{4} y+\ldots\right]$
(j) Calculate the value of $\int_{4}^{5.2} \log _{\mathrm{e}} x d x$ by Trapezoidal rule.

SECTION - B

2. Attempt any three parts :
$3 \times 10=30$
(a) Using the method of contour integration, evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$.
(b) Find the multiple linear regression of x_{1} on x_{2} and x_{3} from the data relating to three variables:

x_{1}	4	6	7	9	13	15
x_{2}	15	12	8	6	4	3
x_{3}	30	24	20	14	10	4

(c) In a normal distribution, 31% of the items are under 45 and 8% are over 64 . Find the mean and standard deviation of the distribution.
(d) Perform four iterations of the Newton-Raphson method to obtain the approximate value of $(17)^{\frac{1}{3}}$ starting with initial approximation $x_{0}=2$.
(e) Find the value of $y(1.1)$, using Runge-kutta method of fourth order, given that $\frac{d y}{d x}=y^{2}+x y, y(1)=1.0$, take $h=0.05$.

SECTION - C

Note : Attempt any two parts from each question.
3. (a) Using Cauchy's integral formula, evaluate

$$
\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-3)} d z
$$

where $\mathrm{C}:|\mathrm{z}|=2$.
(b) Prove that $\cosh \left(z+\frac{1}{z}\right)=a_{0}+\sum_{n=1}^{\infty} a_{n}\left(z^{n}+\frac{1}{z^{n}}\right)$,
where $a_{\mathrm{n}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Cos} \mathrm{n} \theta \cdot \operatorname{Cosh}(2 \cos \theta) \mathrm{d} \theta$.
(c) State and prove Cauchy's Residue Theorem.
4. (a) Find the least squares fit of the form $y=a+b x^{2}$ to the following data :

x	-1	0	1	2
y	2	5	3	0

(b) Show that the regression co-efficients are independent of the change of origin but not of scale.
(c) Find the moment generating function for triangular distribution defined by

$$
\mathrm{f}(x)= \begin{cases}x, & 0 \leq x \leq 1 \\ 2-x, & 1 \leq x \leq 2\end{cases}
$$

5. (a) If the variance of the Poisson distribution is 2, find the probabilities for $\mathrm{r}=1,2,3$ and 4 from the recurrence relation of the Poisson distribution. Also find $\mathrm{P}(\mathrm{r} \geq 4)$.
(b) Given the following information in the usual notations :
$\mathrm{n}_{1}=7, \mathrm{n}_{2}=6, \mathrm{~S}_{1}^{2}=6.21, \mathrm{~S}_{2}^{2}=5.23, \bar{x}=30$ and $\overline{\mathrm{y}}=28$.
Test the hypothesis that the two samples have come from population having equal means.
(c) 100 students of an engineering institute obtained the following grades in Mathematics paper :

Grade	A	B	C	D	E	Total
Frequency	15	17	30	22	16	100

Using χ^{2}-test, examine the hypothesis that the distribution of grades is uniform.
6. (al) Find the mirsings ${ }^{+}$ermit mitne tảble :

x	2	3	4	5	6
$f(x)$	45.0	49.2	54.1	$?$	67.4

(b) Show that the Regula-Falsi Method has linear rate of convergence.
(c) Given the data $f(1)=4, f(2)=5, f(7)=5, f(8)=4$. Find the value of $f(6)$ and also the value of x for which $\mathrm{f}(x)$ is maximum or minimum.
7. (a) Find the derivative of $\mathrm{f}(x)$ at $x=0.4$ from the following table :

x	0.1	0.2	0.3	0.4
$\mathrm{f}(x)$	1.10517	1.22140	1.34986	1.49182

(b) Use Picard's method to approximate the value of y when $x=0.1$ given that $\mathrm{y}=1$ when $x=0$ and $\frac{d y}{d x}=3 x+y^{2}$.
(c) Solve the system : $x_{1}+x_{2}+x_{3}=1$,

$$
\begin{gathered}
3 x_{1}+x_{2}-3 x_{3}=5 \\
x_{1}-2 x_{2}-5 x_{3}=10
\end{gathered}
$$

by Crout's method.

