(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 0112

Roll No. \square

B.Tech.

(SEMESTER-IV) THEORY EXAMINATION, 2012-13
THEORY OF AUTOMATA \& FORMAL LANGUAGES

Time : 3 Hours]
[Total Marks : 100

SECTION - A

1. Attempt all question parts :

$$
10 \times 2=20
$$

(a) Draw the model diagram for finite automata and pushdown automata.
(b) What is the role of finite automata for searching a keyword in documents?
(c) Write Regular Expression for the following languages :
(i) Set of all strings such that the number of 0's is odd
(ii) Set of all strings that do not contain 1101 as a substring
(d) Design CFG for the language consisting of all strings of even length over $\{\mathrm{a}, \mathrm{b}\}$.
(e) Briefly write about Church-Turing thesis with a neat diagram.
(f) What is Moore and Mealy machine ?
(g) Convert the given CFG into PDA by empty stack :
$\mathrm{G}: \quad \mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{a}$

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{SaS} \mid \mathrm{C} \\
& \mathrm{~B} \rightarrow \mathrm{~b}
\end{aligned}
$$

(h) Define the languages generated by Turing Machine.
(i) State whether the following instances of PCP has a solution. Justify.

Top $=(10,011,101) \quad$ Bottom $=(101,11,011)$
(j) Show that φ^{*} is C by constructing its NFA using Thomson's method.

SECTION - B

2. Attempt any three question parts :
(a) (i) Explain in detail about various models of Turing Machine.
(ii) State halting problem. Prove that "HALT TM is undecidable".
(b) Convert the following given Non-deterministic finite automata into minimized Deterministic finite automata.
Given NFA :

States/Input	\mathbf{A}	\mathbf{B}
$\rightarrow \mathrm{p}$	$\{\mathrm{q}, \mathrm{s}\}$	$\{\mathrm{q}\}$
${ }^{\mathrm{q}}$	$\{\mathrm{r}\}$	$\{\mathrm{q}, \mathrm{r}\}$
r	$\{\mathrm{s}\}$	$\{\mathrm{p}\}$
${ }^{\mathrm{s}}$	-	$\{\mathrm{p}\}$

(c) Define Inference, Derivation and Syntax tree. Consider the context free grammar $\mathrm{G}: \mathrm{P} \rightarrow 0 \mathrm{P} 0|1 \mathrm{P} 1| €$ and build derivation, syntax tree and inference for the string 0110 using grammar G.
(d) Construct Pushdown automata for the language $L=\left\{w w^{R} \mid w\right.$ is in $\left.(0+1)^{*}\right\}$. Give instantaneous description of the input 1111.
(e) Consider the following DFA and find its equivalent regular expression using Rij method.
Given DFA :

SECTION - C
Attempt all questions :

$$
\begin{array}{r}
5 \times 10=50 \\
2 \times 5=10
\end{array}
$$

3. Attempt any two parts :
(a) Draw NFA- $€$ transition diagram for the following regular expressions :
(i) $\left((a b)^{*} / b\right) a$
(ii) $\left(0^{*} / 1^{*}\right)^{*} 10$
(b) Write an algorithm to minimize the given DFA using subset construction method.
(c) Construct DFA that accepts set of natural numbers which are divisible by 3 .

Attempt any one part :
(a) State pumping lemma. Prove that the language consisting of "set of all strings over $\{a\}$ whose length is prime" is not regular.
(b) Illustrate in detail about all the closure properties of regular languages.
5. Attempt any one part :
(a) Write down the steps required to convert CFG into Chomsky Normal Form. Consider the following CFG and find its equivalent CNF and GNF.
$G: \quad S \rightarrow A S B \mid \epsilon$

$$
\mathrm{A} \rightarrow \mathrm{aAS} \mid \mathrm{a}
$$

$$
\mathrm{B} \rightarrow \mathrm{SbS}|\mathrm{~A}| \mathrm{bb}
$$

(b) How to eliminate useless symbols and unit productions in a grammar?

Eliminate unit productions for the following CFG :

$$
\begin{aligned}
\mathrm{G}: \mathrm{E} & \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
\mathrm{~T} & \rightarrow \mathrm{~T} * \mathrm{~F} \mid \mathrm{F} \\
\mathrm{~F} & \rightarrow(\mathrm{E}) \mid \mathrm{I} \\
\mathrm{I} & \rightarrow \mathrm{a}|\mathrm{~b}| \mathrm{Ia}|\mathrm{Ib}| \mathrm{I} 0 \mid \mathrm{Il}
\end{aligned}
$$

6. Attempt any one part :
(a) Prove that "Language L has a PDA that accepts it by final state if L has a PDA that accepts it by empty stack".
(b) Find equivalent CFG of the following given PDA :

PDA $\mathrm{P}=\left(\{\mathrm{q} 0, \mathrm{q} 1\},\{\mathrm{a}, \mathrm{b}\},\left\{\mathrm{a}, \mathrm{Z}_{0}\right\}, \delta, \mathrm{q} 0, \mathrm{Z}_{0}\right)$
Where δ :

$$
\begin{aligned}
& \delta\left(\mathrm{q} 0, \mathrm{a}, \mathrm{Z}_{0}\right)=\left(\mathrm{q} 0, \mathrm{aZ} \mathrm{Z}_{0}\right) \\
& \delta(\mathrm{q} 0, \mathrm{a}, \mathrm{a})=(\mathrm{q} 1, \mathrm{aa}) \\
& \delta(\mathrm{q} 1, \mathrm{a}, \mathrm{a})=(\mathrm{q} 1, \epsilon) \\
& \delta\left(\mathrm{q} 1, \epsilon, \mathrm{Z}_{0}\right)=(\mathrm{q} 1, \epsilon)
\end{aligned}
$$

7. Attempt any two parts :
(a) State Post Correspondence Problem and prove that "PCP is undecidable".
(b) Design transition diagram for the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{j}} \mathrm{c}^{\mathrm{k}} \mid \mathrm{i}, \mathrm{j}>0\right.$ and $\left.\mathrm{k}=\mathrm{i}^{*} \mathrm{j}\right\}$ using Turing Machine.
(c) Prove that "Every language defined by a regular expression is also defined by a finite automation".
