Printed Pages-4

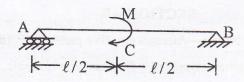
CE401

(Following Paper ID and	d Roll No. to	be fille	d in you	r Answe	er Book)
PAPER ID : 100401	Roll No.	II			I

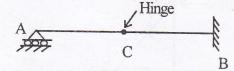
B.Tech.

(SEM. IV) THEORY EXAMINATION 2013-14 STRUCTURAL ANALYSIS—I

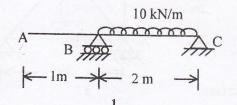
Time : 3 Hours


Total Marks: 100

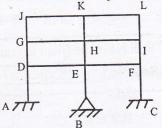
SECTION-A

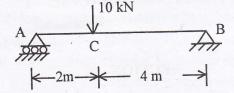

1. Attempt all parts :

(2×10=20)


(a) Draw BMD of following beam

- (b) What is perfect and imperfect truss ?
- (c) What is meant by degree of freedom?
- (d) Draw conjugate beam for following beam.

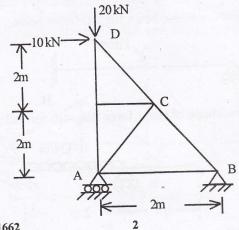

(e) Draw shape of shear force diagram for following beam.


CE401/DQJ-21662

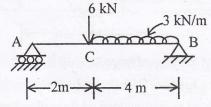
[Turn Over

(f) Find static indeterminacy of following frame

- (g) Find kinemetic indeterminacy of abase frame.
- (h) Draw ILD for BM for following beam at the point C.


- (i) State Muller Breslau's principle.
- (j) How arch is different from a similar beam ?

SECTION-B


(5×6=30)

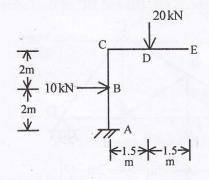
- 2. How are structure classified ? Explain with example.
- 3. What is principle of superpositions ? Explain with example.
- 4. Find member forces in following truss :

CE401/DQJ-21662

- 5. State and explain Cartiglian's IInd theorem.
- 6. Explain method of substitute members for analysis of trusses with suitable example.
- 7. Draw SF diagram for following beam :

8. Explain Linear Arch and prove Eddy's Theorem.

SECTION-C

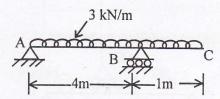

Note :—Attempt any five parts. (5×10=50)

9. The equation of a three hinged parabolic arch with origin at its

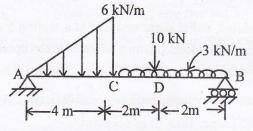
left hand support is $y = x - \frac{x^2}{40}$. The span of arch is 40 m. Find

normal thrust, radial shear and BM at a section 5 m from left hand if the arch is loaded with a udl of 30 kN/m upon its left half of the span ony.

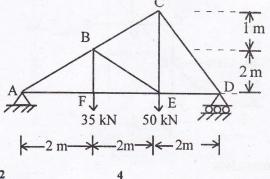
10. Using unit load method, find horizontal deflection at the end E of following frame. Take EI as constant.



CE401/DQJ-21662


3

[Turn Over


11. Find deflection at free end of following beam using conjugate beam method. Take EI as constant.

- 12. Find max. BM developed anywhere on the girder of span 20 M due to rolling loads of 250 kN and 150 kN spaced 6 M apart with 150 kN load as leading load while rolling from left to right. Also find equivalent udl to give same BM.
- 13. Prove that when a series of point loads rolls upon a simply supported girder, then for max. BM to occur under a choosen wheel load the span must equally divide the distance between the chosen wheel load and the resultant of all loads on the span.
- 14. Develop SFD and BMD of following beam :

15. Find forces in the members, FE, BE and BC of the following truss. C

CE401/DQJ-21662

7850