(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 110404 Roll No. \square

B.Tech.

(SEM. IV) THEORY EXAMINATION 2013-14

THEORY OF COMPUTATION

Time : 3 Hours
Total Marks : 100
Note :- Attempt all questions.

SECTION-A

1. Attempt all question parts :
$(10 \times 2=20)$
(a) Design a FA to accept the string that always ends with 00 .
(b) Differentiate L^{*} and L^{+}.
(c) Design a Moore m / c which will increment the given binary number by 1 .
(d) Describe the instantaneous description of a PDA.
(e) Let $G=\left(\left\{S, A_{1}, A_{2}\right\},\{a, b\}, P, S\right)$, where P consists of $\mathrm{S} \rightarrow \mathrm{a} \mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{a}, \mathrm{A}_{1} \rightarrow \mathrm{baA}_{1} \mathrm{~A}_{2} \mathrm{~b}, \mathrm{~A}_{2} \rightarrow \mathrm{~A}_{1} \mathrm{ab}, \mathrm{aA}_{1} \rightarrow$ baa, $\mathrm{bA}_{2} \mathrm{~b} \rightarrow$ abab. Test whether $\mathrm{w}=$ baabbabaaabbaba is in L(G).
(f) What are the features of universal Turing machine?
(g) What is Church's Hypothesis?
(h) Construct the CFG for the regular expression $(0+1)^{*}$.
(i) State Halting problem of Turing machine.
(j) What is the difference between DFA and NDFA ?

SECTION-B

2. Attempt any three question parts :
(a) Construct a NFA for the language L which accepts all the strings in which the third symbol from right end is always 'a' over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
(b) State and prove that Regular Languages are closed under Union, Concatenation, Kleen and Complementation.
(c) Convert the following NFA to a DFA and informally describe the language it accepts :

	0	1
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$
q	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{t}\}$
r	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{t}\}$
$*_{\mathrm{s}}$	Φ	Φ
${ }_{\mathrm{t}}$	Φ	Φ

(d) The following grammar generates the language consisting of all strings of even length :

$$
\mathrm{S} \rightarrow \mathrm{AS}|\Lambda, \mathrm{~A} \rightarrow \mathrm{aa}| \mathrm{ab}|\mathrm{ba}| \mathrm{bb} .
$$

Give left-most and right-most derivations for the following strings :
(i) bbbbbbba
(ii) baabab
(iii) aaabbb
(e) Convert the grammar $\mathrm{S} \rightarrow \mathrm{aAA}, \mathrm{A} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a}$ to a PDA that accepts the same language by empty stack.

SECTION-C

Note :-Attempt all questions.
3. Attempt any two parts :
(a) Describe the programming technique of Turing machine.
(b) Give the DFA's accepting the following languages over the alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
(i) $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{w}=\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}}\right.$ for $\left.\mathrm{m}, \mathrm{n}>0\right\}$
(ii) $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{w}\right.$ is the string representation of a floating point numbers $\}$
(iii) $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{w}\right.$ contains an odd number of a's $\}$
(c) Prove that the recursive languages are closed under Union, Intersection and Complement.
4. Attempt any two parts :
(a) Check whether the given grammar is ambiguous or not:

$$
S \rightarrow|C \tau S||C \tau S e S| a, C \rightarrow b
$$

(b) For the two regular expressions :

$$
\mathrm{r} 1=\mathrm{a}^{*}+\mathrm{b}^{*} \quad \mathrm{r} 2=\mathrm{ab} *+\mathrm{ba} *+\mathrm{b}^{*} \mathrm{a}+\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*}
$$

(i) Find a string corresponding to r 2 but not to rl and
(ii) Find a string corresponds to both r 1 and r 2 .
(c) Consider the following $\in-$ NDFA:

	\in	a	b	c
$\rightarrow \mathrm{p}$	$\{\mathrm{q}, \mathrm{r}\}$	Φ	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	Φ	$\{\mathrm{p}\}$	$\{\mathrm{r}\}$	$\{\mathrm{p}, \mathrm{q}\}$
${ }_{\mathrm{r}}$	ϕ	ϕ	ϕ	Φ

(i) Compute the ϵ-closure of each state.
(ii) Give the set of strings of length 3 or less accepted by the automata.
(iii) Convert the automata to a DFA.
5. Attempt any two parts :
(a) Construct PDA for the language $\mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$
(b) Show that $L=\left\{a^{i} b^{j} c^{k} \mid k>i+j\right\}$ is not regular.
(c) Give the state transition diagram for a FA for accepting:
(i) $\mathrm{Ll}=\left\{\left.\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}| | \mathrm{x}\right|_{\mathrm{a}}=3 \mathrm{k}\right.$ for some $\mathrm{k} \geq 0$ and also x ends with "ab"\}
(ii) $\mathrm{L} 2=\left\{\left.\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}| | \mathrm{x}\right|_{\mathrm{a}}=3 \mathrm{k}\right.$ for some $\mathrm{k} \geq 0$ or x ends with "ab" $\}$.
6. Attempt any two parts :
(a) Construct deterministic pushdown automata to accept binary strings that start and end with the same symbol and have the same number of 0 s as 1 s .
(b) Convert the given grammar G into $\mathrm{CNF} . \mathrm{G}$ is $\mathrm{S} \rightarrow \mathrm{ABA}$, $\mathrm{A} \rightarrow \mathrm{aA}|\Lambda, \mathrm{B} \rightarrow \mathrm{bB}| \Lambda$.
(c) Prove that for every regular language there is a finite automaton.
7. Attempt any two parts :
(a) Construct a TM for language consisting of strings having any number of 0 's and only even number of 1 's over the input set $\Sigma=\{0,1\}$.
(b) State $P C P$ problem. A correspondence system $P=\{(01,1$, $10,010),(1,01,0,1)\}$. Is there any solution for P ?
(c) Use the CFL pumping lemma to show that following language is not context free :
i) $\left\{0^{i} 1^{j} \mid j=i^{2}\right\}$.

