Printed Pages—4

CS404

(Following Paper ID and Roll No. to be filled in your Answer Book)										
PAPER ID : 110404	Roll No.				1					

B.Tech.

(SEM. IV) THEORY EXAMINATION 2013-14 THEORY OF COMPUTATION

Time : 3 Hours

Total Marks: 100

Note :- Attempt all questions.

SECTION-A

1. Attempt all question parts :

 $(10 \times 2 = 20)$

- (a) Design a FA to accept the string that always ends with 00.
- (b) Differentiate L^* and L^+ .
- (c) Design a Moore m/c which will increment the given binary number by 1.
- (d) Describe the instantaneous description of a PDA.
- (e) Let $G = (\{S, A_1, A_2\}, \{a, b\}, P, S)$, where P consists of $S \rightarrow a A_1A_2a, A_1 \rightarrow baA_1A_2b, A_2 \rightarrow A_1ab, aA_1 \rightarrow baa, bA_2b \rightarrow abab.$ Test whether w = baabbabaaabbaba is in L(G).
- (f) What are the features of universal Turing machine?
- (g) What is Church's Hypothesis?
- (h) Construct the CFG for the regular expression $(0 + 1)^*$.
- (i) State Halting problem of Turing machine.
- (j) What is the difference between DFA and NDFA?

1

CS404/DQJ-21768

[Turn Over

SECTION-B

- 2. Attempt any three question parts : $(10 \times 3=30)$
 - (a) Construct a NFA for the language L which accepts all the strings in which the third symbol from right end is always 'a' over Σ = {a, b}.
 - (b) State and prove that Regular Languages are closed under Union, Concatenation, Kleen and Complementation.
 - (c) Convert the following NFA to a DFA and informally describe the language it accepts :

a dal	0	1
→p	{p,q}	{p}
q	{r, s}	{t}
r	$\{p, r\}$	{t}
*s	Φ	Φ
*t	Φ	Φ

(d) The following grammar generates the language consisting of all strings of even length :

 $S \rightarrow AS \mid \Lambda, A \rightarrow aa \mid ab \mid ba \mid bb.$

Give left-most and right-most derivations for the following strings :

- (i) bbbbbbba
- (ii) baabab
- (iii) aaabbb
- (e) Convert the grammar S → aAA, A → aS | bS | a to a PDA that accepts the same language by empty stack.

2

CS404/DQJ-21768

SECTION-C

(5×10=50)

Note :- Attempt all questions. 3. Attempt any two parts :

- (a) Describe the programming technique of Turing machine.
- (b) Give the DFA's accepting the following languages over the alphabet Σ = {a, b} :
 - (i) $L = \{w \in \{a, b\}^* | w = a^m b^n \text{ for } m, n > 0\}$
 - (ii) L = {w ∈ {a, b}* | w is the string representation of a floating point numbers}
 - (iii) $L = \{w \in \{a, b\}^* | w \text{ contains an odd number of a's} \}$
- (c) Prove that the recursive languages are closed under Union, Intersection and Complement.
- 4. Attempt any two parts :
 - (a) Check whether the given grammar is ambiguous or not :

 $S \rightarrow |C\tau S| |C\tau S e S| a, C \rightarrow b$

(b) For the two regular expressions :

$$r1 = a^* + b^*$$
 $r2 = ab^* + ba^* + b^*a + (a^*b)^*$

- (i) Find a string corresponding to r2 but not to r1 and
- (ii) Find a string corresponds to both r1 and r2.
- (c) Consider the following \in NDFA :

	e	a	b	C
→p	{q, r}	Φ	{q}	{r}
q	Φ	{ p }	{r}	{p,q}
*r	ф	ф	φ	Φ

- (i) Compute the \in -closure of each state.
- (ii) Give the set of strings of length 3 or less accepted by the automata.

3

(iii) Convert the automata to a DFA.

CS404/DQJ-21768

[Turn Over

- 5. Attempt any two parts :
 - (a) Construct PDA for the language $L = \{a^{2n}b^n | n \ge 1\}$
 - (b) Show that $L = \{a^i b^j c^k | k > i + j\}$ is not regular.
 - (c) Give the state transition diagram for a FA for accepting :
 - (i) $L1 = \{x \in \{a, b\}^* | |x|_a = 3 \text{ k for some } k \ge 0 \text{ and also } x \text{ ends with "ab"} \}$
 - (ii) $L2 = \{x \in \{a, b\}^* | |x|_a = 3 \text{ k for some } k \ge 0 \text{ or } x \text{ ends} with "ab" \}.$
- 6. Attempt any two parts :
 - (a) Construct deterministic pushdown automata to accept binary strings that start and end with the same symbol and have the same number of 0s as 1s.
 - (b) Convert the given grammar G into CNF. G is S → ABA, A → aA | A, B → bB | A.
 - (c) Prove that for every regular language there is a finite automaton.
- 7. Attempt any two parts :
 - (a) Construct a TM for language consisting of strings having any number of 0's and only even number of 1's over the input set Σ = {0, 1}.
 - (b) State PCP problem. A correspondence system $P = \{(01, 1, 10, 010), (1, 01, 0, 1)\}$. Is there any solution for P?
 - (c) Use the CFL pumping lemma to show that following language is not context free :

i) $\{0^i 1^j | j = i^2\}.$

CS404/DQJ-21768

12425