Printed Pages—7

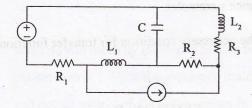
EC404(MTU)

(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 130404 Roll No.

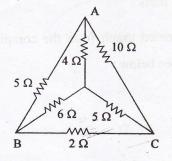
B.Tech.

(SEM. IV) THEORY EXAMINATION 2013-14 NETWORK ANALYSIS AND SYNTHESIS

Time : 3 Hours


Total Marks : 100

Note :- Attempt all questions.


1. Attempt all parts :

(10×2=20)

- (a) Define Tress, co-trees, and also write the properties of trees.
- (b) Draw the dual of the ckt shown in fig:

(c) Find the equivalent resistance between A and B.

1

EC404(MTU)/DQJ-21901

[Turn Over

- (d) Find the current I using superposition theorem.
- (e) Write the statement of the Thevenin and Norton's theorem.
- (f) Verify Tellegen's theorem for the N/W shown in fig:

- (g) Discuss the transient Response of series RLC ckt.
- (h) What do you mean by driving point Impedance and driving point Admittance.
- (i) Define open ckt Impedance parameter and short ckt admittance parameter.
- (j) Write the necessary condition for transfer function.

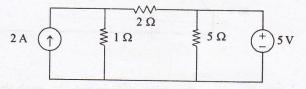
SECTION-B

2. Attempt any three parts :

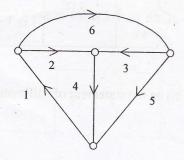
(3×10=30)

(a) Draw the oriented graph from the complete Incidence Matrix Aa given below :

EC404(MTU)/DQJ-21901


2

Nodes Branches


	[1	2	3	4	5	6 1 0 -1 0
A	-1	0	1	0	0	1
B	0	0	-1	1	0	0
С	1	1	0	-1	1	-1
D	0	-1	0	0	-1	0

From the graph drawn, find the the no. of possible trees and co-trees and draw them.

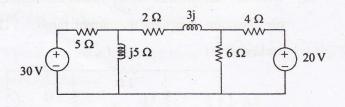
(b) Write the statement of superposition theorem. Using the superposition, determine the current, through 5 Ω resistor in ckt shown :

(c) What do you mean by Incidence Matrix tie-set matrix, and cut-set matrix ? Write the incidence matrix, tierset matrix and cut set matrix of the graph shown in fig :

3

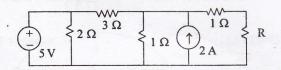
EC404(MTU)/DQJ-21901

[Turn Over


(d) What do you mean by steady state Response and Transient Response ? Discuss the transient Response series RL ckt.

SECTION-C

Note :- Attempt all questions from this Section. (5×10=50)

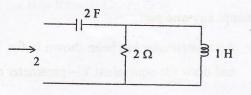

3. Attempt any one part : (1×10=10)

(a) Using the superposition theorem, calculate the current through the (2 + 3j) Ω impedance branch of the ckt shown if fig:

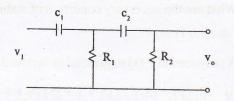
(b) (i) Find the value of R in the ckt, such that maximum power transfer takes place. What is the amount of

this power?

(ii) Write the statement of Millman theorem.

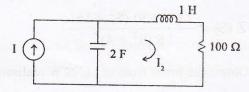

4

EC404(MTU)/DQJ-21901


4. Attempt any one part :

$(1 \times 10 = 10)$

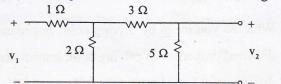
(a) What do you mean by driving point Impedance ? Write different properties of driving point Impedance. Find the driving point Impedance of the following N/W :


(b) What is the significance of pole zero plot ? Find the expression of voltage transfer ratio for the N/W shown in fig:

5. Attempt any one part :

 $(1 \times 10 = 10)$

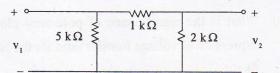
(a) What do you mean by simple pole/zero repeated pole/zero, complex conjugate pole/zero? Find the pole = 200 location of the current transfer ratio I_2/I_1 in the s-domain for the ckt shown in fig :



EC404(MTU)/DQJ-21901

5

[Turn Over


(b) Find the z-parameter for the ckt shown in fig :

6. Attempt any one part :

 $(1 \times 10 = 10)$

(a) An π attenuator has been shown in fig; find Y parameter and draw the equivalent Y – parameter ckt :

(b) What are the necessary condition of stability of a network function H (s) ?

A polynomial P (s) expressed in factored form is given by

- (i) $P_1(S) = (S+2)(S+1+j5)(S+1-j5)$
- (ii) $P_2(S) = (S-2)(S+1)(S+3)$

Check whether the polynomial are Hurwitz or not.

- 7. Attempt any one part : (1×10=10)
 - (a) The driving point Impedance of a one-point LC N/W is given by:

$$Z(S) = \frac{2(S^2 + 9)(S^2 + 16)}{S(S^2 + 4)}$$

Obtain the foster from of LC N/W realisation.

EC404(MTU)/DQJ-21901

6

(b) A driving point Impedance is given by

$$Z_{\rm LC} = \frac{S(S^2 + 4)(S_2 + 6)}{(S^2 + 1)(S^2 + 5)}$$

Obtain the first form of Cauer N/W.

7

EC404(MTU)/DQJ-21901

9100