

(d) Find the language generated by the following grammar :

 $S \rightarrow aAb/ab$, $A \rightarrow bAa$, $A \rightarrow \varepsilon$

- (e) Discuss the halting problem of a Turing machine.
- 2 Attempt any four parts of the following. 5×4=20
 - (a) Design a FA which accepts set of strings containing
 - exactly four 1's in every string over $\Sigma = \{0, 1\}$.
 - (b) Design the Turing machine that accepts the language of even integers written in binary.
 - (c) Convert the CFG into GNF. $S \rightarrow aSbA$ $A \rightarrow Sa/a$
 - (d) Define context free grammar. Find a context free grammar for the following language. $L=\{a^{n}b^{2n}c^{m} \mid n, m \ge 0\}$
 - (e) Find the regular expression using Arden's theorem of FA given below.

110410]

2

[Contd...

3 Attempt any four parts of the following.

- (a) Prove that the language L={ 0ⁿ | n is perfect cube} is not regular.
- (b) Find the CFG for the language $L=\{a^n b^n | n+m is even\}$.
- (c) Convert the following CFG into PDA $S \rightarrow aSa/aA/Bb, A \rightarrow aA/a, B \rightarrow Bb/A$
- (d) Design PDA for palindrome strips.
- (e) Discuss tractable and non tractable problems.
- 4 Attempt any two parts of the following. 10x2=20
 - (a) Define push down automata. Design a PDA for the following language.

 $L=\{a^i b^j c^k | i=j \text{ or } j=k\}$

- (b) Write the regular expression for the language containing the strings over {0,1} in which there are at least two occurences of 1's between any two occurences of 0's.
- (c) Construct a CFG for the following language s.t. $L = \{a^m \ b^n \mid m \neq n\}.$

3

110410]

- -

[Contd...

5 Attempt any two parts of the following.

- (a) Write short notes on the following.
 - (1) Universal Turing machine
 - (2) Post correspondence problem.
- (b) Does the PCP with two lists X=(10, 011, 101),
 Y = (101, 11, 011) have a solution?
- (c) Design Turing machine for the language $L=\{a^{n+2} \ b^n \ | \ n \ge 0\}.$

110410]

4

[15425]