(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 121413

Roll No. \square
B. Tech.
(SEM. IV) THEORY EXAMINATION, 2014-15
ELECTRIC MACHINE \& AUTOMATIC CONTROL
Time: 3 Hours]
[Total Marks : 100
1 Attempt any four of the following :

$$
4 \times 5=20
$$

(a) Explain the different speed control methods used in a DC motor.
(b) Discuss conversion from 3 phase to 2 phase using Scott connection.
(c) Briefly enumerate the working of auto transformer with its merits, demerits.
(d) A 10 kva single phase $500 / 250 \mathrm{v}$ transformer gave following test.

OC TEST	250 V	3 A	200 W
SC TEST	15 V	30 A	300 W

Find efficiency and regulaton at full load 0.8 p.f. Lagging ?

121413]

: (e) Why series motor is never start on no load, also explain application of DC series and shunt motor.
(f) Why starter is required in DC motor? Explain different method of starting.

2 Attempt any two of the following:
$10 \times 2=20$
(a) (i) Explain the working principle of 3-phase induction motor. The rotor of induction motor cannot run at synchronous speed. Explain. Why?
(ii) 3- ϕ induction motor is wound for 4 poles and is supplied from 50 Hz system. Calculate
(a) synchronous speed
(b) rotor speed when slip is 4% and
(c) rotor frequency when rotor runs at 600 rpm .
(b) Explain the working of two phase servo motor and their application.
(c) Explain the following:
(i) Synchronizing of alternators
(ii) V-curve of synchronous motor

3 Attempt any two of the following :

$$
10 \times 2=20
$$

(a) Compare open loop and closed loop system with suitable examples.

121413]

2

[Contd....
(b) Obtain differential equation describing equivalent mechanical system of fig. 1 and draw the equivalent F-V analogy.

Fig. 2
Fig. 1
(c) What do you mean by Transfer Function; find out Transfer Function for Fig. 2 circuit.

4 Attempt any two of the following;
(a) Find out steady type error with unit step, ramp and parabolic input for
(i) type zero
(ii) type one
(iii) type two system
(b) (i) Explain bounded i/p bounded o/p stability criterion.
(ii) Find stability condition for following characteristics equation

$$
\mathrm{s}^{3}+2 \mathrm{ks}^{2}+(\mathrm{k}+2)^{*} \mathrm{~s}+4=0
$$

(c) Draw polar plot for $\mathrm{G}(\mathrm{s})=\mathrm{K} /(\mathrm{sA}+1)^{*}(\mathrm{sB}+1)$ for unity feedback system, find Gain margin, phase margin.

5 Attempt any two of the following :
$10 \times 2=20$
(a) Draw bode plot and determine G.M., P.M., comment on stability.
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=16(1+0.5 \mathrm{~s}) / \mathrm{s}^{2} *(1+0.125 \mathrm{~s}) *(1+0.1 \mathrm{~s})$
(b) Explain the Proportional, Derivate, Integral controller and write their advantages.
(c) construct root locus for $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\mathrm{k} / \mathrm{s}^{*}(\mathrm{~s}+4) *(\mathrm{~s}+5) \quad \mathrm{K}>0$

