

- Note:Attempt all questions from each Section as indicated. The symbols have their usual meaning.
- 1 Attempt any FOUR parts of the following: $(5 \times 4 = 20)$
 - (a) Using C R equations show that $f(z) = |z|^2$ is not analytical at any point.
 - (b) State Cauchy's integral formula. Hence evaluate:

$$\int_{c} \frac{2z+1}{z^2+z} dz \quad \text{where C is } |z| = \frac{1}{2}.$$

(c) Expand $\frac{1}{Z^2 - 3Z + 2}$ in the region 1 < |z| < 2.

(d) Find the analytic function whose real part is $e^{2x}(x\cos 2y - y\sin 2y)$

199419]

1

[Contd...

(e) Evaluate the integral:

$$\int_{0}^{2\pi} \frac{d\theta}{5 - 3\cos\theta}$$

(f) Determine the poles of the following function and residue at each pole:

$$f(z) = \frac{z^2}{(z-1)^2(z+2)}$$

and hence evaluate

$$\int_{c} f(z) dz, \text{ where } C: |z| = 3.$$

2 Attempt any TWO parts of the following: $(10 \times 2=20)$

(a) Find the Fourier cosine transform of $\frac{1}{1+x^2}$ and hence

find Fourier sine transform of $\frac{x}{1+x^2}$.

(b) Find the inverse Z-transform of:

$$f(z) = \frac{3z^2 - 18z + 26}{(z - 2)(z - 3)(z - 4)}$$

(c) Solve the following difference equation:

$$y_{k+2} + 4y_{k+1} + 3y_k = 3^k$$
; given $y_0 = 0$ and $y_1 = 1$.

199419]

[Contd...

3 Attempt any TWO parts of the following: $(10 \times 2 = 20)$

(a) Using the method of least square fit a curve of the

form $y = a b^x$ to the following data:

X	2	3	4	5	6
Y	8.3	15.4	33.1	65.2	127.4

- Find the mean and variance of Binomial distribution. (b)
- (c) The first four moments of a distribution about x = 4are 1, 4, 10 and 45. Calculate the moments about the mean and comment upon the Skewness and Kurtosis of the distribution.

Attempt any TWO parts of the following: $(10 \times 2=20)$ 4

- Using Newton-Raphson method, find real root of (a) equation $3x - \cos x - 1 = 0$ correct up to four decimal places. Also find the order of convengence of the method.
- From the given data (b)

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

find the polynomial in x and hence find the value of f(8).

(c)Estimate from the following table the number of students who obtained marks between 40 and 45:

Marks	30-40	40-50	50-60	60-70	70-80
No. of Students	31	42	51	35	31

199419]

[Contd...

3

- 5 Attempt any TWO parts of the following: $(10 \times 2=20)$
 - (a) Apply Gauss Seidal Method to solve the equations(three iterations) :

2x+10y+z = 5510x+y+2z = 44

x+2y+10z = 61

(b) Find $\int_{0}^{6} \frac{e^{x}}{1+x} dx$ approximately using Simpson's $\frac{1}{3}$ rule

and Simpson's $\frac{3}{8}$ rule, dividing the range into 6 equal parts.

parts.

(c) Given the initial value

problem
$$\frac{dy}{dx} = 1 + y^2$$
; $y(0) = 0$. Find

y(0.2), y(0.4) by Runge - Kutta fourth - order.