NAS401
(Following Paper ID and Roll No, to be filled in your Answer Book)

PAPER ID : 199419

Roll No. \square
B. Tech.
(SEM. IV) THEORY EXAMINATION, 2014-15
ENGG MATHEMATICS - III
Time : $\mathbf{3}$ Hours]
[Total Marks : 100

Note:Attempt all questions from each Section as indicated. The symbols have their usual meaning.

1 Attempt any FOUR parts of the following: ($5 \times 4=20$)
(a) Using $\mathrm{C}-\mathrm{R}$ equations show that $f(z)=|z|^{2}$ is not analytical at any point.
(b) State Cauchy's integral formula. Hence evaluate:

$$
\int_{c} \frac{2 z+1}{z^{2}+z} d z \quad \text { where } \mathrm{C} \text { is }|z|=\frac{1}{2} .
$$

(c) Expand $\frac{1}{Z^{2}-3 Z+2}$ in the region $1<|z|<2$.
(d) Find the analytic function whose real part is $e^{2 x}(x \cos 2 y-y \sin 2 y)$
(e) Evaluate the integral:

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-3 \cos \theta}
$$

(f) Determine the poles of the following function and residue at each pole:

$$
f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}
$$

and hence evaluate

$$
\int_{c} f(z) d z, \text { where } C:|z|=3
$$

2 Attempt any TWO parts of the following:
(a) Find the Fourier cosine transform of $\frac{1}{1+x^{2}}$ and hence

$$
\text { find Fourier sine transform of } \frac{x}{1+x^{2}} \text {. }
$$

(b) Find the inverse Z-transform of:

$$
f(z)=\frac{3 z^{2}-18 z+26}{(z-2)(z-3)(z-4)}
$$

(c) Solve the following difference equation:

$$
y_{k+2}+4 y_{k+1}+3 y_{k}=3^{k} ; \text { given } y_{0}=0 \text { and } y_{1}=1
$$

3 Attempt any TWO parts of the following:
(a) Using the method of least square fit a curve of the form $y=a b^{x}$ to the following data:

X	2	3	4	5	6
Y	8.3	15.4	33.1	65.2	127.4

(b) Find the mean and variance of Binomial distribution.
(c) The first four moments of a distribution about $x=4$ are $1,4,10$ and 45 . Calculate the moments about the mean and comment upon the Skewness and Kurtosis of the distribution.

4 Attempt any TWO parts of the following: $\quad(10 \times 2=20)$
(a) Using Newton-Raphson method, find real root of equation $3 x-\cos x-1=0$ correct up to four decimal places. Also find the order of convengence of the method.
(b) From the given data

X	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

find the polynomial in x and hence find the value of $f(8)$.
(c) Estimate from the following table the number of students who obtained marks between 40 and 45:

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No.of Students	31	42	51	35	31

5 Attempt any TWO parts of the following:
(a) Apply Gauss - Seidal Method to solve the equations (three iterations) :
$2 x+10 y+z=55$
$10 x+y+2 z=44$
$x+2 y+10 z=61$
(b) Find $\int_{0}^{6} \frac{e^{x}}{1+x} d x$ approximately using Simpson's $\frac{1}{3}$ rule
and Simpson's $\frac{3}{8}$ rule, dividing the range into 6 equal parts.
(c) Given the initial value
problem $\quad \frac{d y}{d x}=1+y^{2} ; \quad y(0)=0$. Find
$y(0.2), y(0.4)$ by Runge - Kutta fourth - order.

