I I IIIIUUI AZUS. /

NAS-401/EAS-401

(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID : 199419

Roll No.

B. TECH.

Theory Examination (Semester-IV) 2015-16

ENGG MATHEMATICS-III

Time : 3 Hours

Max. Marks : 100

Section-A

- 1. Attempt all questions of this section. Each question carry equal marks. $(2 \times 10 = 20)$
 - (a) Write the cauchy's Reimaun conditions in polar coordinates system.
 - (b) Write the statement of generalized cauchy's integral formula for nth derivative of an analytic function at the point $Z = Z_0$.
 - (c) Find the Z transform of $U_n = \{a^n\}$
 - (d) Write the normal equations to fit a curve $y = ax^2 + b$ by least square method.

(1)P.T.O. 2105/38/1259/31475

- (e) If covariance between x and y variable is 10 and the variance of x and y are respectively 16 and 9, find the coefficient of correlation.
- (f) The regression equations calculated from a given set of observations for two random variable are

x = -0.4y + 6.4 and y = -0.6x + 4.6 calculate mean values of x and y.

- (g) Write the Newton's Raphson iterative formula to find the value of \sqrt{N} .
- (h) Find the missing data in the given table :

x	0	1	2	3	
f(x)	580	556	stions o	465	

(i) If f(n) is given in following table :

x	0	0.5	1		
f(x)	1	0.8	0.5		

then using trapezoidal rule, evaluate

 $\int f(x)dx$

(j) Find the third forward difference with the arguments 2, 4, 6, 8 of the function $f(x) = x^3 - 2x$

2. Attempt any five questions from this section.

 $(10 \times 5 = 50)$

(a) Find the Laurent series for the function

$$f(z) = \frac{7z^2 + 9z - 18}{Z^3 - 9z}$$
, Z is complex variable

valid for the regions

(i) 0 < |z| < 3 (ii) |z| > 3

(b) Using calculus of residue, evaluate the following integral

$$\int_{0}^{\infty} \frac{dx}{\left(a^2 + x^2\right)^2}$$

- (c) Find the inverse Fourier sine transform of $\frac{1}{x}e^{-as}$
- (d) Using least square method, fit a second degree polynomial from the following data :

x	0	1	2	3	4	5	6	7	8
у	12.0	10.5	10.0	8.0	7.0	8.0	7.5	8.5	9.0

Also estimate y at x = 6.5

(3)P.T.O. 2105/38/1259/31475

(e) For the following data, calculate the finite differences and obtain the forward and backward difference polynomials. Also interpolate at x = 0.25 and x = 0.35

x	0.1	0.2	0.3	0.4	0.5
f(x)	1.40	1.56	1.76	2.00	2.28

(f) Construct the divided difference table for the data.

x	0.5	1.5	3.0	5.0	6.5	8.0
f(x)	1.62	5.87	31.0	131.0	282.12	521.0

Hence find the interpolating polynomial and an approximation to the value of f(z).

(g) Solve the system of equations AX=B, where

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & -2 \\ 4 & 0 & 2 & 1 \\ 3 & 2 & 2 & 0 \\ 1 & 3 & 2 & -1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -10 \\ 8 \\ 7 \\ -5 \end{bmatrix}$$

using the LU decdomposition method. Take all the diagonal elements of L as 1.

(4)

(h) Solve the initial value problem

$$\frac{dy}{dx} = -2xy^2, y(0) = 1$$

with h = 0.1 on the interval [0,0.3]. Use the fourth order Runge-Kutta method.

Section-C

Note: Attempt any two questions from this section. Each $(15 \times 2 = 30)$ question carry equal marks.

3. (a) Show that for the function give as -

$$f(z) = \begin{cases} \frac{2xy(x+iy)}{x^z + y^z} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

The C-R conditions are satisfied at origin but derivative of f(z) at origin does not exist.

(b) Verify that the function on 4(xy) = xy is harmonic and find its conjugate harmonic function. Express u+iv as an analytic function f(z).

(5)

$$u = x^2 - y^2 - y$$

(c) Find the Fourier transform of Block function f(t) of height 1 and duration a defined by

$$f(t) = \begin{cases} 1 & \text{for } |t| \le \frac{a}{2} \\ 0 & \text{otherwise} \end{cases}$$

4. (a) Using Z - tranform, solve the difference equation

$$u_{n+2} - 4u_{n+1} + 3u_n = 5'$$

with $u_0 = u_1 = 1$

- (b) The first four moments of a distribution about x = 4 are 1, 4, 10, 45. Comment on the skewness and Kurtosis of the distribution.
- (c) For 10 observations on price (x) and supply (y) the following data were obtained

 $\Sigma x = 130, \Sigma y = 220, \Sigma x^2 = 2288$ $\Sigma x^2 = 5506$ and $\Sigma_{xy} = 3467$

Obtain the two lines of regression.

5. (a) Find the root of the euqation $xe^x = 3$ by regula talsi method correct up to two decimal places in the interval (1, 1.5).

(6)

2105/38/1259/31475

(b) Prove the following identities :

(i)
$$\left(\frac{\Delta^2}{E}\right)\mu_x \neq \frac{\Delta^2\mu_x}{E\mu_x}$$

(ii)
$$\left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{E(e^x)}{\Delta^2 e^x} = e^x$$

(c) The velocity v of a particle at distance s from a point on its path is given by the following table :

s (m.)	0	10	20	30	40	50	60
v (m./s.)	47	58	64	65	61	52	38

Estimate the time taken to travel 60m. Using Simpson's one-third rule.

(7)