(Following Paper ID and Roll No. to be filled in your Answer Books)
Paper ID : 199419

B. TECH.

Theory Examination (Semester-IV) 2015-16

ENGG MATHEMATICS-III

Time : 3 Hours
Max. Marks : 100

Section-A

1. Attempt all questions of this section. Each question carry equal marks.
(a) Write the cauchy's Reimaun conditions in polar coordinates system.
(b) Write the statement of generalized cauchy's integral formula for $\mathrm{n}^{\text {th }}$ derivative of an analytic function at the point $Z=Z_{0}$.
(c) Find the Z - transform of $\mathrm{U}_{\mathrm{n}}=\left\{\mathrm{a}^{\mathrm{n}}\right\}$
(d) Write the normal equations to fit a curve $y=a x^{2}+b$ by least square method.
(e) If covariance between x and y variable is 10 and the variance of x and y are respectively 16 and 9 , find the coefficient of correlation.
(f) The regression equations calculated from a given set of observations for two random variable are
$x=-0.4 y+6.4$ and $y=-0.6 x+4.6$ calculate mean values of x and y.
(g) Write the Newton's Raphson iterative formula to find the value of $\sqrt{\mathrm{N}}$.
(h) Find the missing data in the given table :

x	0	1	2	3
$f(x)$	580	556	-	465

(i) If $f(n)$ is given in following table :

x	0	0.5	1
$f(x)$	1	0.8	0.5

then using trapezoidal rule, evaluate
$\int_{0}^{1} f(x) d x$
(j) Find the third forward difference with the arguments $2,4,6,8$ of the function $f(x)=x^{3}-2 x$

Section-B

2. Attempt any five questions from this section.

$$
(10 \times 5=50)
$$

(a) Find the Laurent series for the function $f(z)=\frac{7 z^{2}+9 z-18}{Z^{3}-9 z}, Z$ is complex variable valid for the regions
(i) $0<|z|<3$
(ii) $|z|>3$
(b) Using calculus of residue, evaluate the following integral

$$
\int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}
$$

(c) Find the inverse Fourier sine transform of $\frac{1}{x} e^{-a s}$
(d) Using least square method, fit a second degree polynomial from the following data :

x	0	1	2	3	4	5	6	7	8
y	12.0	10.5	10.0	8.0	7.0	8.0	7.5	8.5	9.0

Also estimate y at $x=6.5$

2105/38/1259/31475
(e) For the following data, calculate the finite differences and obtain the forward and backward difference polynomials. Also interpolate at $x=0.25$ and $x=0.35$

x	0.1	0.2	0.3	0.4	0.5
$f(x)$	1.40	1.56	1.76	2.00	2.28

(f) Construct the divided difference table for the data.

x	0.5	1.5	3.0	5.0	6.5	8.0
$f(x)$	1.62	5.87	31.0	131.0	282.12	521.0

Hence find the interpolating polynomial and an approximation to the value of $f(z)$.
(g) Solve the system of equations $\mathrm{AX}=\mathrm{B}$, where

$$
A=\left[\begin{array}{cccc}
2 & 1 & 1 & -2 \\
4 & 0 & 2 & 1 \\
3 & 2 & 2 & 0 \\
1 & 3 & 2 & -1
\end{array}\right], \quad B=\left[\begin{array}{c}
-10 \\
8 \\
7 \\
-5
\end{array}\right]
$$

using the LU decdomposition method. Take all the diagonal elements of L as 1 .
(h) Solve the initial value problem

$$
\frac{d y}{d x}=-2 x y^{2}, y(0)=1
$$

with $\mathrm{h}=0.1$ on the interval $[0,0.3]$. Use the fourth order Runge-Kutta method.

Section-C

Note: Attempt any two questions from this section. Each question carry equal marks.
3. (a) Show that for the function give as -

$$
f(z)=\left\{\begin{array}{cc}
\frac{2 x y(x+i y)}{x^{z}+y^{z}} & \text { if } z \neq 0 \\
0 & \text { if } z=0
\end{array}\right\}
$$

The C-R conditions are satisfied at origin but derivative of $f(z)$ at origin does not exist.
(b) Verify that the function on $4(x y)=x y$ is harmonic and find its conjugate harmonic function. Express $u+i v$ as an analytic function $f(z)$.

$$
u=x^{2}-y^{2}-y
$$

(c) Find the Fourier transform of Block function $f(t)$ of height 1 and duration a defined by
$f(t)=\left\{\begin{array}{ll}1 & \text { for }|t| \leq \frac{a}{2} \\ 0 & \text { otherwise }\end{array}\right\}$
4. (a) Using Z - tranform, solve the difference equation

$$
u_{n+2}-4 u_{n+1}+3 u_{n}=5^{n}
$$

$$
\text { with } u_{0}=u_{1}=1
$$

(b) The first four moments of a distribution about $x=4$ are $1,4,10,45$. Comment on the skewness and Kurtosis of the distribution.
(c) For 10 observations on price (x) and supply (y) the following data were obtained
$\Sigma x=130, \Sigma y=220, \Sigma x^{2}=2288$
$\Sigma x^{2}=5506$ and $\Sigma_{x y}=3467$

Obtain the two lines of regression.
5. (a) Find the root of the euqation $x e^{x}=3$ by regula talsi method correct up to two decimal places in the interval (1 , 1.5).
(b) Prove the following identities:
(i) $\left(\frac{\Delta^{2}}{E}\right) \mu_{x} \neq \frac{\Delta^{2} \mu_{x}}{E \mu_{x}}$
(ii) $\left(\frac{\Delta^{2}}{E}\right) e^{x} \cdot \frac{E\left(e^{x}\right)}{\Delta^{2} e^{x}}=e^{x}$
(c) The velocity v of a particle at distance s from a point on its path is given by the following table :

$s(m)$.	0	10	20	30	40	50	60
v (m./s.)	47	58	64	65	61	52	38

Estimate the time taken to travel 60 m . Using Simpson's onethird rule.

