(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID : 110407

B.TECH.

Theory Examination (Semester-IV) 2015-16

THEORY OFAUTOMATAAND
 FORMAL LAUNGUAGE

Time : 3 Hours
Max. Marks : 100

Section-A

Q. 1 Attempt all parts. All parts carry equal marks. Write answer of each part in short.
$(2 \times 10=20)$
(a) Design a FA to accept the string that always ends with 00 .
(b) Differentiate between the L^{*} and L^{+}.
(c) Write regular expression for set of all strings such that number of 0 's is odd.
(d) What is a Moore and Mealy machine?
(e) Construct the CFG for the regular expression $(0+1)^{*}$.
(f) What are the features of universal Turing machine?
(g) Define the languages generated by Turing machine.
(h) Describe the instantaneous description of a PDA.
(i) Design a DFA to accept the binary number divisible by 3 .
(j) What do you understand by Epsilon-closure of sate in finite automata?

Section-B

2. Attempt any five parts. All parts carry equal marks:

a. Construct a NFA for the language L which accept all the strings in which the third symbol from right end is always an over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
b. State and Prove Pumping Lemma of RE. Show that $L=\left\{a^{p}\right.$: p is prime\} is not regular?
c. Explain the parse tree with an example. Reduce the context free grammar into GNF whose productions are $\mathrm{S} \rightarrow \mathrm{aSb} . \mathrm{S} \rightarrow \mathrm{ab}$.
d. Define Pushdown automata. Differentiate PDA by empty stack and final state by giving their definitions.
e. Obtain PDA to accept all strings generated by the language $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m} \mathrm{a}^{\mathrm{n}}}, \mathrm{m}, \mathrm{n}>=1\right\}$.
f. Construct DFA eauivalent to NFA. where δ is defined in the following table: 1

Q	$\delta(\mathrm{q}, \mathrm{a})$	$\delta(\mathrm{q}, \mathrm{b})$
A	A, B	C
B	A	B
C^{*} (final stale)	-	A, B

Table: 1
g. Consider the CFG ($\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S}$) where productions Pare as follows:
$\mathrm{S} \rightarrow \mathrm{a} \mathrm{ABB} / \mathrm{aAA}, \mathrm{A} \rightarrow \mathrm{aBB} / \mathrm{a}, \mathrm{B} \rightarrow \mathrm{bBB} / \mathrm{A}$. Convert the given grammar to PDA that accept the same language by empty stack.
h. Design CFG for the language consisting of all strings of even length over $\{\mathrm{a}, \mathrm{b}\}$.

Section-C

Note:Attempt any two questions from this section.
($2 \times 15=30$)
3. Write short notes on the following:
(a) Halting Problem
(b) Church's thesis
(c) Recursively enumerable language
4. What is Chomsky hierarchy? Explain post correspondence problem.
5. Construct a Turing machine which accepts the regular expression, $L=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n}>=1\right\}$.

