B.TECH.

THEORY EXAMINATION (SEM–IV) 2016-17 INFORMATION THEORY AND CODING

Time : 3 Hours

Note : Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

1. Explain the following:

(a) Draw the block diagram of communication system

Roll No.

- (b) At what condition entropy attains maximum value? Write the expression for source efficiency
- (c) Out of following code which one is non singular?

Source	S ₁	S ₂	S3	S ₄
Code A	00	001	101	110
Code B	00	100	111	00

(d) List out

 $5 \ge 10 = 50$

two important properties of mutual information

- (e) State Shannon Hartley Theorem with expression.
- (f) List out the properties of Block codes.
- (g) Find the hamming weight of two code vectors $C_1=0001010$, C2=1010101
- (h) What are convolutional codes? How is it different from block codes?
- (i) Obtain an Expression for zero memory information sources emitting independent sequence of symbols
- (j) Why (23, 12) Golay code is called Perfect code?

SECTION – B

2. Attempt any five of the following questions:

- (a) (i) A source emits one of the four possible messages S_1 , S_2 , S_3 and S_4 with probabilities 4/11, 3/11, 2/11 and 2/11 respectively. Find the entropy of the source. List all the elements for the second extension of the source. Hence show that $H(S^2) = 2 H(S)$.
 - (ii) Discuss the properties of Entropy
- (b) (i) Discuss External Property of Entropy with examples
 - (ii) Explain the need for source coding in communication system and discuss about compact code
- (c) (i) Consider the following $S=\{X_1, X_2, X_3, X_4, X_5, X_6\}$ with probability $P=\{0.4, 0.2, 0.2, 0.1, 0.08, 0.02\}$. Find the code words using Shannon fano Algorithm and efficiency of source
 - (ii) Clearly explain differential entropy of continuous signal. How it is different from entropy of discrete signals?
- (d) (i) Explain the properties of Mutual information.
 - (ii) For a Systematic (7, 4) linear block code, the parity matrix P is given by

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

(A) Find all possible code vectors

Printed Pages : 3

 $10 \ge 2 = 20$

Max. Marks: 100

AND CODIN(

- (B) A single error has occurred in received vector. Detect and correct the error **R**=[1011100]
- (e) (i) Discuss the data compression techniques
 - Consider the (4,3,2) code with input sequence $u^1 = (101)$, $u^2 = (110)$ and (ii) $u^{3}=(011)$. The corresponding input polynomials are $u^{(1)}(D)=1+D^{2}$, $u^{(2)}(D)=1+D$. construct the codeword using transform domain approach.

A transmitter has symbol consisting of five letters {a1, a2, a3, a4, a5} and receiver as a symbol of four letters {b₁, b₂, b₃, b₄}. The joint probabilities of the system are given as

	0.25	0	0	0
$D(\Lambda D) =$	0.10	0.30	0	0
P(A, D) -	0	0.05	0.10	0
	0	0	0.05	0.1
	0	0	0.05	0

Compute H (A), H (B), H (A, B) and I(A,B).

(ii) Discuss about (i) priori entropy (ii) Posteriori Entropy (iii) Equivocation

- Explain uniquely decodable code and optimal code. (i)
- (ii) An information source produces sequences of independent symbols having the following probabilities. Construct ternary code using Huffman coding procedure and find it efficiency.

A	В	C	D	E	F	G
1/3	1/27	1/3	1/9	1/9	1/27	1/27

(h)

Explain the Concept of Shortened Cyclic codes and Burst error correcting codes (i) A source produces sequence of symbols having the following probabilities. (ii)

А	В	С	D	E
0.25	0.25	0.2	0.15	0.15

Construct binary code using Shannon fano Elias coding procedure and find its Length and efficiency.

SECTION - C

Attempt any two of the following questions:

 $2 \ge 15 = 30$ A Binary Symmetric Channel has following matrix with Source probabilities $P(X_1) =$ 3. (a) 2/3, $P(X_2) = 1/3$. Determine H(X), H(Y), H(Y/X) and Chanel capacity

$$P\left(\frac{Y}{X}\right) = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

(b) Consider the four codes listed below. Identify the instantaneous codes using Kraft Mcmilan inequality theorem

Source symbol	Code A	Code B	Code C	Code D
S_1	0	0	0	0
S_2	100	10	100	10
S ₃	110	110	110	110
S4	111	11	11	111

4. **(a)** Write a Short note On:

- BCH codes and RS codes (i) (ii) Golay codes
- (iiii) Burst and Random Error correcting codes
- A (6, 3) Linear block code has following check bit C4= d_1+d_2 , C₅= d_1+d_3 , C₆= d_2+d_3 **(b)**

(g)

(f)

(i)

- (i) Write G and H Matrices
- (ii) construct standard array table
- (a) Discuss about hamming distance and minimum distance with good examples.

(b) Consider the (3,1,2) convolution codes with $g^{(1)}=(110)$, $g^{(2)}=(101)$ and $g^{(3)}=(111)$

- (i) Draw the encoder diagram and find the generator matrix
- (ii) Find the codeword corresponding to the information sequence (11101) using time domain approach.

5.