Printed Pages: 03
Paper Id:

Roll No. \square

B. TECH.
 (SEM IV) THEORY EXAMINATION 2017-18

MATHEMATICS III

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

$2 \times 10=20$
(a) Determine analytic function $f(z)$ in terms of z whose real part is $x^{3}-3 x y^{2}$.
(b) Write Cauchy's Reimann conditions in polar coordinates system
(c) If the Fourier transform of $e^{-x^{2}}$ is $\sqrt{\pi} e^{-p^{2} / 4}$ then find Fourier transform of $e^{-5(x-2)^{2}}$.
(d) Find Z transform of a^{k}.
(e) Write normal equations to fit the curve $y=a x^{2}+b$ by method of least square.
(f) Find mean and variance of Poisson distribution.
(g) Write the Newton Raphson iteration formula
(h) Prove that third divided difference of $\left(\frac{1}{a}\right)$ is $-\frac{1}{a b c d}$.
(i) Discuss diagonal dominant property for system of linear equations.
(j) Use Picard's method to obtain $y(0.2)$ up to two iterations. Given: $\frac{d y}{d x}=x-y$ with the condition $y(0)=1$

SECTION B

2. Attempt any three of the following:
(a) By contour integration find: $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x ; a>0$.
(b) Using Z-transform solve the difference equation: $y_{k+2}+4 y_{k+1}+3 y_{k}=3^{k}$, given $y_{0}=0, y_{1}=1$.
(c) In a normal distribution. 31% of the items are under 45 and 8% are over 64 . Find mean and standard deviation of the distribution. It is given that $f(t)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} e^{-\frac{1}{2} x^{2}} d x$, then $f(0.5)=0.19$ and $f(1.4)=0.42$.
(d) Find the real root of equation $3 x+\sin x-e^{x}=0$ by the method of False-position correct to three decimal places.
(e) Find the value of $y(1.1)$ using Runge-Kutta method of fourth-order, given that $\frac{d y}{d x}=y^{2}+x y, y(1)=1$, take $h=0.05$.

SECTION C

3. Attempt any one part of the following:

$$
10 \times 1=10
$$

(a) State and prove Cauchy's Residue Theorem. Hence or otherwise evaluate $\oint_{C} \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)} d z$, where C is $|z|=10$.
(b) Expand $\frac{7 z-2}{z^{3}-z^{2}-2 z}$ in the regions (i) $1<|z+1|<3$ (ii) $0<|z+1|<1$ (ii) $|z+1|>3$

4. Attempt any one part of the following:

$$
10 \times 1=10
$$

(a) Find Fourier cosine transform of $\frac{1}{1+x^{2}}$ and hence find Fourier sine transform of $\frac{x}{1+x^{2}}$
(b) The temperature u in the semi-infinite $\operatorname{rod} 0 \leq x<\infty$ is determined by the differential equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions;
(i) $\mathrm{u}=0$ when $\mathrm{t}=0, x \geq 0$ (ii) $\frac{\partial u}{\partial x}=-\mu$
(a constant) when $\mathrm{x}=0$ and $\mathrm{t}>0$. Making use of cosine transform, show that $u(x, t)=\frac{2 \mu}{\pi} \int_{0}^{\infty} \frac{\cos p x}{p^{2}}\left(1-e^{-k p^{2} t}\right) d p$
5. Attempt any one part of the following:
(a) The first four moments of a distribution about $\mathrm{x}=4$ are $1,4,10$ and 45 . Calculate the moments about the mean and comment upon the skewness and kurtosis of the distribution.
(b) To test the effectiveness of inoculation against cholera, the following table was obtained:

	Attacked	Not attacked	Total
Inoculated	30	160	190
Not inoculated	140	460	600
Total	170	620	790

(The figures represent the number of persons)
Use χ^{2}-test to defend or refute the statement that that the inoculation prevents attack from cholera. $\left(\chi_{0.05}^{2}\right.$ for 1 d.f. $\left.=3.841\right)$.
6. Attempt any one part of the following:
(a) By means of Newton's divided difference formula, find the value of $\mathrm{f}(15)$ from the following table:

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

(b) Estimate from the table, the number of students who obtained marks between 40 and

Marks:	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students:	31	42	51	35	31

7. Attempt any one part of the following:
$10 \times 1=10$
(a) Solve by Crout's method, the following system of equations:

$$
x+y+z=3,2 x-y+3 z=16,3 x+y-z=-3
$$

(b) Find the approximate value of $\int_{0}^{\frac{\pi}{2}} \sin x d x$ by Simpson's rule.

