

B.Tech

(SEM V) ODD SEMESTER THEORY EXAMINATION 2009-10 ANALOG INTEGRATED CIRCUITS

Time : 3 Hours]
[Total Marks : 100

Note : Attempt all questions.

1 Answer any two of the following : $10 \times 2=20$
(a) Derive the expression for I_{0} in the following circuit.

Also find the output impedance.
(b) Draw the output stage of a $741-\mathrm{C}$ op-amp and explain how it protects the op-amp against short circuit. Also derive the output impedance.
(c) Explain the working of a CC level shifter and give proper reasons as to why the lower resistance in emitter is replaced by a current mirror.

2 Answer any two of the following
(a) Design a 741-C based INV amplier for $A_{v}=-20$ such that the circuit offers maximum input impedance. Given
$V_{o s(\text { max })}=6 \mathrm{mV}$ and $\left(\boldsymbol{R}_{1}| | \boldsymbol{R}_{2}\right)$
$I_{o s(\max)}=9 \mathrm{mV}$ where
$I_{o s(\max)}=260 n A$.
(b) Calculate V_{0} in the following circuit:

(c) Design a biquad filter with $f_{0}=8 \mathrm{kHz}$, $B W=250 \mathrm{~Hz}$ and a $20-\mathrm{dB}$ response gain. What is the value of $H_{\text {OLP }}$?

3 Answer any two of the following
(a) Explain the working of the following circuit and draw its output wave form if input is a $\pm 5 \mathrm{~V}$ sine. Assume D_{1}, D_{2} to be ideal.

(b) It is required to generate the following waveform using an OP-AMP.

(c) Draw an OP-AMP based Mónostable multivibrator and explain its working.

4 Answer any two of the following: $10 \times 2=20$
(a) Design a LM 723 based voltage regulator with following parameters :
(i) Input voltage $(16 \mathrm{~V}-20 \mathrm{~V})$
(ii) Output voltage $=6 \mathrm{~V}$
(iii) $I_{L_{\text {(max }}}=250 \mathrm{~mA}$
(iv) $I_{s c}=75 \mathrm{~mA}$

[Contd...
(b) Explain the basic principle of SMPS. List the merits and demerits.
(c) Draw the internal circuit of an off the shelf bipolar OTA and explain its working.

5 Answer any two of the following : $10 \times 2=20$
(a) Explain the working of the following circuit :

(b) It is required to generate a frequency 4 f from an input frequency of f. Suggest a circuit and explain its working.
(c) Design an OP-AMP based amplifier to give a voltage gain of $2,3,5$ and 9 depending upon the status of 2 digital inputs \boldsymbol{X}_{1} and \boldsymbol{X}_{2}.

