(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER 1B: 1075 Roll No. \square B.Tech

(SEM V) ODD SEMESTER THEORY EXAMINATION 2009-10

DESIGN \& ANALYSIS OF ALGORITHMS

Time: 3 Hours]
Note : (i) Attempt all questions.
(ii) All parts of a question should be attempted at one contiguous place.

1 Attempt any four parts of the following
(a) Solve the recurrence relation using master method
$T(n)=3 T\left(n^{1 / 3}\right)+\log 3^{n}$
(b) What do you understand by 'stable' sort ? Name two stable sort algorithms.
(c) Prove that Heapsort and Mergesort are optimal comparison sorting algorithms.
(d) Illustrate the functioning of Heapsort on the following array

$$
A=\langle 25,57,48,37,12,92,86,33,\rangle
$$

(e) How can you modify quicksort algorithm to search an item in a list of elements ?
(f) What is the importance of 'average-case analysis' of algorithms?

Attempt any four parts of the following
$5 \times 4=20$
(a) Two stacks are kept in a single array STK [Max] to utilize the array memory optimally : STK [] :

1	2	3		Max-2 Max-1 Max		
a_{1}	a_{2}	a_{3}	$\rightarrow+\ldots \ldots \ldots+$	b_{3}	b_{2}	b_{1}

Fig. 1
First stack grows in forward direction from start whereas second grows backwards from end.

Write PUSH 1, PUSH 2, POP 1, POP2 for the two stacks.
(b) Define Red-black trees and state their applications.
(c) Prove that the maximum degree of any node in a n-node binomial tree is $\log n$.
(d) What is a disjoint-set data structure ? How running times of disjoint set data structures is analyzed ?
(e) Show the results of inserting the keys :

$$
F, S, Q, K, C, L, H, T, V, W, M, R, N
$$

in order into an Empty B -tree with minimum degree 2 .
(f) What is implied by augmenting a data-structure? Explain with an example.

3 Attempt any two parts of the following
$10 \times 2=20$
(a) When and how Dynamic Programming approach is applicable ?

Discuss the matrix-chain multiplication with respect to Dynamic programming technique.
(b) What is "Greedy algorithm" ? Write its pseudo code. Apply greedy algorithm on coloring the vertices of the following graph :

Fig. 2
(c) Discuss backtracking problem solving approach with the help of an example.

4 Attempt any two of the following: $10 \times 2=20$
(a) Given a graph $G=\left(V_{1}, E\right)$ and let V_{1} and V be two distinct vertics. Explain how to modify Dijekstra's shortest path algorithm to determine the number of distinct shortest paths from U to V .

Also, comment on whether Dijekstra's shortest path algorithm work correctly if weights are negative.

JJ-1075] |n|
(b) Discuss Travelling salesman Problem and various approaches to solve the problem with complexity analysis of each.
(c) Explain the Floyd Warshall algorithm with Example. Which design strategy the algorithm uses ?

5 Write short notes on any four of the following : $\mathbf{5 \times 4}=\mathbf{2 0}$
(a) Approximation of a NP-complete problem.
(b) Randomized sorting algorithm.
(c) Proving the problem of finding maximum clique of a graph to be NPC.
(d) Problem classes and their implications.
(e) Maximum Flow Problem.
(f) Knuth-Morris - Pratt algorithm for pattern matching.

