Printed Pages-3		ECS502
(Following Paper ID	and Roll No. to be filled in	n your Answer Book)
PAPER ID : 2165	Roll No.	
	B. Tech.	
(SEM.	V) ODD SEMESTER T	HEORY
	EXAMINATION 2010-11	I and proved S
DESIGN A	ND ANALYSIS OF ALC	GORITHMS
Time : 3 Hours	en e	Total Marks : 100
Note: (1)	Attempt all questions.	
(2)	All questions carry equal n	narks.
(3)	Be precise in your answer.	
1. Attempt any fo	our of the following :—	(5×4=20)
(a) Determi functions	ne the asymptotic order s:	r of the following
(i) f(n) -	$= 3x^2 + 5$	
(ii) f(n) :	$= 2^{n} + 5n + 3$	
(iii) f(n)	$=\sum_{i=1}^{n} i^2$	

(iv) f(n) = 5

(v)
$$f(n) = n + 7$$
.

(b) Why do we use asymptotic notation in the study of algorithm ? Explain in brief various asymptotic notations and give their significance.

- (c) Solve the following recurrence using Master method : $T(n) = 4T(n/3) + n^2$.
- (d) Discuss any one sorting algorithm having linear time complexity.
- (e) Explain and write partitioning algorithm for quick sort.
- (f) Write an algorithm to count the number of nodes in a given circular linked list.
- 2. Attempt any two of the following :- (10×2=20)
 - (a) Explain red-black tree. Prove that a red-black tree with n internal nodes has height at most 2 log₂(n+1).
 - (b) Explain and write an algorithm for union of two binomial heaps. Also discuss the time complexity for the same.
 - (c) Write short notes on the following :---
 - (i) B-Trees.
 - (ii) Fibonacci heaps.

Attempt any two of the following :--

(a) Define minimum cost spanning tree. Write Prim's algorithm to generate a minimum cost spanning tree for any given weighted graph. Generate minimum cost spanning tree for the following graph using Prim's

 $(10 \times 2 = 20)$

CS502/VEQ-15377

- (b) Write an algorithm to find minimum and maximum elements simultaneously from a given list of elements. You are also required to discuss its running time.
- (c) Explain and write an algorithm for Greedy method of algorithm design. Given 10 activities along with their start and finish time as

 $S = \{A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9, A_{10}\}$ $S_i = \{1, 2, 3, 4, 7, 8, 9, 9, 11, 12\}$ $F_i = \{3, 5, 4, 7, 10, 9, 11, 13, 12, 14\}$

Compute a schedule where the largest numbers of activities take place.

- 4. (a) Discuss the dynamic programming solution to longest common subsequence (LCS) problem. Write an algorithm to compute an LCS of two given strings.
 - (b) Describe the Warshall's and Floyd's algorithm for finding all pairs shortest paths.
 - (c) Write short notes on the following :---
 - (i) Graph coloring
 - (ii) Hamiltonian cycles.

5. Attempt any two of the following :-- (10×2=20)

- (a) Show the comparisons the Naive-String matcher makes for the pattern $P = \{10001\}$ in the text $T = \{0000100010010\}$ and also show that worst cast time to find the first occurrence of a pattern in a text is 0(n - m + 1)(m - 1).
- (b) Explain and write Knuth-Morris-Pratt algorithm for pattern matching and also comment on its running time
- (c) Write short notes on the following :---
 - (i) Fast Fourier Transform
 - (ii) NP-completeness.

ECS502/VEQ-15377

25195