Printed Pages—3				TCS503	
(Following Paper ID and Roll No. to be filled in your Answer Book)					
PAPER ID : 1075	Roll No.				
B.Tech.					
(SEM. V) ODD SEMESTER THEORY					
EXAMINATION 2010-11					
DESIGN AND ANALYSIS OF ALGORITHMS					
Time : 3 Hours			Total	Marks : 100	
Note : (1) Attempt all questions.					
(2) All questions carry equal marks.					
1. Attempt any four parts of the following :— $(5 \times 4 = 20)$					
(a) Determine the asymptotic order of the following					
functions :					
(i) $f(n) = 6 \cdot 2^n + n^2$.					
(ii) $f(n)$	(ii) $f(n) = 7$.				
(b) Solve th	Solve the recurrence relation $T(n) = 2T(\sqrt{n}) + 1$				
whenever n is a prefect square greater than 1 and					
T(2) = 3	T(2) = 3.				
(c) Solve the recurrence relation using Master's Theorem :					
T(n)	= 7T(n/2) + 1	8n ² , when	e n \geq 2 and	a power of 2.	
(d) Write quick sort algorithm. Prove that the running time complexity of quick sort is O(n log n) in average.					
(e) You are given an array of n integers $a_1 < a_2 < \dots a_n$. Give					
an O(log n) algorithm that finds index i where $a_i = i$ or prove that such i does not exist.					
(f) Describe Heap sort algorithm.					
TCS503/VEQ-14853		1		[Turn Over	

- 2. Attempt any two parts of the following $(10 \times 2=20)$
 - (a) Show the Red black tree that is to be resulted after successively inserting the keys 41 31 31, 12, 19, 8 into an initially empty red black tree.
 - (b) Define a B-tree of order m. Let d = [m2] and let n be the number of elements in the B-tree. Show that

 $2d^{h-1}-1 \leq n \leq m^h-1$

where h is the height of the B-tree

- (c) Define Fibonacci heap. Differentiate between Binom and Fibonacci heap.
- 3. Attempt any two parts of the following :— $(10 \times 2=20)$
 - (a) Describe greedy method. Find the optimal solution to the Knapsack instance n = 3, W = [100, 14, 10], P = [20, 18, 15] and C = 116 using greedy method.
 - (b) Obtain the dynamic programming recurrence equations for the 0/1 Knapsack problem of n instances. Assume suitable data for n instances Knapsack.
 - (c) Consider a four vertex network as shown below. Find a least cost tour using backtracking method.

TCS503/VEQ-14853

- 4. Attempt any two parts of the following :— $(10 \times 2=20)$
 - (a) Use Strassen's algorithm to compute the product of two given matrices :

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} \text{ and } \begin{bmatrix} 8 & 4 \\ 6 & 2 \end{bmatrix}.$$

(b) Find the minimum cost spanning tree of the given graph using Prim's algorithm.

- (c) Describe Floyd Warshal's algorithm to find all pairs shortest paths in a directed network.
- 5. Write short notes on any four of the following :— $(5 \times 4 = 20)$
 - (a) NP-Completeness.
 - (b) Randomized algorithms.
 - (c) Branch-and-Bound algorithm.
 - (d) Approximation algorithms.
 - (e) Hamiltonian cycle problem.
 - (f) Chromatic Number.

3