(Following Paper ID and Roll No. to be filled in your Answer Book)

B.Tech.

(SEM. V) ODD SEMESTER THEORY EXAMINATION 2010-11
 DESIGN AND ANALYSIS OF ALGORITHMS

Note: (1) Attempt all questions.
(2) All questions carry equal marks.

1. Attempt any four parts of the following :($5 \times 4=20$)
(a) Determine the asymptotic order of the following functions:
(i) $f(n)=6 \cdot 2^{n}+n^{2}$.
(ii) $\mathrm{f}(\mathrm{n})=7$.
(b) Solve the recurrence relation $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\sqrt{\mathrm{n}})+1$ whenever n is a prefect square greater than 1 and $T(2)=3$.
(c) Solve the recurrence relation using Master's Theorem :
$T(n)=7 T(n / 2)+18 n^{2}$, where $n \geq 2$ and a power of 2 .
(d) Write quick sort algorithm. Prove that the running time complexity of quick sort is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ in average.
(e) You are given an array of n integers $a_{1}<a_{2}<\ldots \ldots a_{n}$. Give an $O(\log n)$ algorithm that finds index i where $a_{i}=i$ or prove that such i does not exist.
(f) Describe Heap sort algorithm.
2. Attempt any two parts of the following -
(a) Show the Red black tree ther in in be resulted after successively inserting the kess + In 31, 12, 19, 8 into an initially empty red black tee
(b) Define a B-tree of order m. $\mathbb{L e t} \mathrm{d}=\square \pm 2\rceil$ and let n be the number of elements in the $B-1 m=$ Stuw that

$$
2 \mathrm{~d}^{\mathrm{h}-1}-1 \leq \mathrm{n} \leq \mathrm{m}^{\mathrm{h}}-1
$$

where h is the height of the $B-t=0$
(c) Define Fibonacci heap. Differantite between Binomit and Fibonacci heap.
3. Attempt any two parts of the following :- $\quad(\mathbf{1 0} \times 2=20)$
(a) Describe greedy method. Find the optimal solution to the Knapsack instance $\mathrm{n}=3, \mathrm{~W}=[100,14,10]$, $\mathrm{P}=[20,18,15]$ and $\mathrm{C}=116$ using greedy method.
(b) Obtain the dynamic programming recurrence equations for the $0 / 1$ Knapsack problem of n instances. Assume suitable data for n instances Knapsack.
(c) Consider a four vertex network as shown below. Find a least cost tour using backtracking method.

4. Attempt any two parts of the following :$(10 \times 2=20)$
(a) Use Strassen's algorithm to compute the product of two given matrices :

$$
\left[\begin{array}{ll}
1 & 3 \\
5 & 7
\end{array}\right] \text { and }\left[\begin{array}{ll}
8 & 4 \\
6 & 2
\end{array}\right]
$$

(b) Find the minimum cost spanning tree of the given graph using Prim's algorithm.

(c) Describe Floyd Warshal's algorithm to find all pairs shortest paths in a directed network.
5. Write short notes on any four of the following :- $\quad(5 \times 4=20)$
(a) NP-Completeness.
(b) Randomized algorithms.
(c) Branch-and-Bound algorithm.
(d) Approximation algorithms.
(e) Hamiltonian cycle problem.
(f) Chromatic Number.

