

(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 2110	Roll No.			Ι							

B.Tech.

(SEM. V) ODD SEMESTER THEORY EXAMINATION 2010-11

FUNDAMENTALS OF E.M. THEORY

Time : 2 Hours

4

Total Marks : 50

Note : Attempt all questions.

1. Attempt any four of the following :

 $(5 \times 4 = 20)$

- (a) State and prove divergence theorem.
- (b) Given two vectors $R_A = -a_x 3a_y 4a_z$, $R_B = 2a_x + 2a_y + 2a_z$ and C(1,3,4). Find :
 - (i) R_{AB}
 - (ii) | R_A |
 - (iii) a_A
 - (iv) a_B
 - (v) Unit vector directed from C toward A.
- (c) Derive an expression of energy density in electrostatic field.
- (d) The potential in free space is given by :

V = (50/r), a < r < b (spherical)

- (i) Show $\rho_v = 0$ for a < r < b
- (ii) Find the energy stored in region a < r < b.

EEC508/VEQ-15330

[Turn Over

- (e) Define scalar field and vector field with suitable example.
- (f) Discuss different coordinate system. Show various parameter with diagram.
- 2. Attempt any two of the following : $(5 \times 2 = 10)$
 - (a) Discuss electrostatic boundary condition between conductor and free space.
 - (b) Define continuity equation in point form and integral form.
 - (c) A capacitor with two dielectric is as follows :

Plate areas = 100 cm², dielectric 1 thickness = 3 mm, $\varepsilon_{r1} = 3$, dielectric 2 thickness = 2 mm, $\varepsilon_{r2} = 2$, if the potential of 100 V is applied across plate. Find the energy stored in each dielectric & potential gradient in each dielectric.

- 3. Attempt any two of the following : $(5 \times 2 = 10)$
 - (a) Derive Maxwell's equation from Faraday's law and Ampere circuital law.
 - (b) A current element $I_1 \Delta L_1 = 10^{-5}a_z$ AM is located at $P_1(1,0,0)$ while a second element $I_2 \Delta L_2 = 10^{-5}(0.6a_x 2a_y + 3a_z)$ AM is located at $P_2(-1,0,0)$ both in free space. Find the vector force on element 2 by element 1.

An

(c) Derive an expression of magnetic field intensity due to infinite long straight conductor using Ampere's circuital law.

EEC508/VEQ-15330

- 4. Attempt any **two** of the following :
 - (a) Derive the condition for polarization of uniform plane wave.
 Write a short note on linear polarization of uniform plane wave.
 - (b) Derive an expression of uniform plane wave in free space and good conductor.
 - (c) A medium is characterized by $\varepsilon_r = 2.5$, $\mu_r = 4$, $\sigma = 10^{-3}$ S/m at frequency of 10 MHz. Find:

2

- (i) Attenuation constant
- (ii) Phase constant
- (iii) Propagation constant
- (iv) Velocity of propagation
- (v) Intrinsic impedance.

EEC508/VEQ-15330

7615

 $(5 \times 2 = 10)$