Printed Pages-3					TE	E501
(Following Paper ID and Roll No. to be filled in your Answer Book)						
PAPER ID : 2055 Roll No.						
B. Tech.						
(SEM. V) ODD SEMESTER THEORY						
EXAMINATION 2010-11						
ELECTROMECHANICAL ENERGY CONVERSION-II						
Time : 3 Hours				Total	Mark	s : 100
Note: (1) Attempt all questions.						
(2) All questions carry equal marks.						
1. Attempt any four parts of the following : (5×4=20)						
(a) Derive e.m.f. equation of an alternator. Also explain the						
meaning of Distribution factor and coil span factor.						
(b) A 3-phase star-conne) A 3-phase star-connected 1000 kVA, 2000 V, 50 Hz					
alternator gave the following O.C. and S.C. test readings :						
Field Current (A)	10	20	25	30	40	50
O.C. Voltage (V)	800	1500 200	1760 250	2000	2350	2600
Determine the full-load percentage regulation at 0.8 p.f. lagging.						
	low	th the	halm	ofno	at dia	
	(c) Explain Potier's triangle with the help of neat diagram.					
(d) Explain the magnetomotive force method with suitable						
phasor diagram and e.m.f. versus I _f curve representing OCC and SCC.						
	,		17			. 1
(e) A 500 kVA, 3-phase, 6-pole, 11 kV star-connected						
alternator is running in parallel with the synchronous						
TEE501/VEO 15440	1				17	An Ostan

machine on 11,000 V bus. The synchronous reactance of the machine is 5 Ω /phase. Calculate the synchronizing power per mechanical degree at full load.

- (f) Explain voltage regulation using synchronous impedance method.
- 2. Attempt any two parts of the following :- (10×2=20)
 - (a) What is an infinite bus? State the operating characteristics of an infinite bus for an alternator connected to an infinite bus. Also show that the behaviour of a synchronous machine on an infinite bus is quite different from its isolated operation.
 - (b) Explain the Two-Reaction Theory applicable to salientpole synchronous machine. Derive an expression for finding regulation for the same. Also draw the phasor diagram.
 - (c) Explain torque-angle characteristics of a salient-pole synchronous machine. A 2-pole, 50 Hz, 3-phase turbo alternator is excited to generate the bus-bar votlage of 11 kV on no load. The machine is star-connected and a short-circuit current of this excitation is 1000 A. Calculate P_{syn} and τ_{syn} .

Attempt any two parts of the following :- (10×2=24)

- (a) What is the principle of operation of 3-phase induction machine ? Explain analytically or graphically (showing all necessary waveform and phasor diagram) how rotating magnetic field is produced in a 3-phase induction motor.
- (b) Derive the relationship for torque developed by a 3-phase induction motor. Draw the torque-slip characteristics and deduce the condition for maximum torque.

:501/VEQ-15440

1

- (c) Explain the procedure of no-load and blocked rotor test on a 3-phase induction motor. A cage induction motor when started by means of a star-delta starter takes 180% of full-load line current and develops 35% of full-load torque at starting. Calculate :
 - (i) starting torque for star-delta in terms of full-load values.
 - (ii) starting torque for auto-transformer with 75% tapping.
- - (a) Compare a single-cage motor with a double-cage induction motor of the same rating. Draw the equivalent circuit of a double-cage induction motor. Sketch torque and current characteristics of the same.
 - (b) Explain the phenomenon of crawling and cogging in a 3-phase induction motor.
 - (c) Discuss briefly the method of speed control of 3-phase induction motor. Also explain the method of speed control by varying frequency and rotor resistance in a 3-phase induction motor.
 - 5. Attempt any two parts of the following :-- (10×2=20)
 - (a) Using double-revolving field theory, explain why a singlephase induction motor is not self-starting.
 - (b) Discuss the procedure for determining the parameters of equivalent circuit of a single-phase induction motor.
 - (c) Explain the operation of a stepper motor. What are the advantages and disadvantages of a stepper motor ? State some important applications of stepper motors.

TEE501/VEQ-15440

P