Printed	Pages—4
---------	---------

TME505

(Following Paper ID and Roll No. to be filled in your Answer Book)									
PAPER ID: 4078	Roll No.		1 mar 20						

B.Tech.

(SEM. V) ODD SEMESTER THEORY EXAMINATION 2010-11

HEAT & MASS TRANSFER

Time : 3 Hours

Total Marks : 100

- Note : (1) Attempt all questions. Marks are indicated against each question/part.
 - (2) Use the data and relations provided in the question paper.
 - (3) Assume missing data suitably, if any.
- 1. Answer any four parts of the following : (5×4=20)
 - (a) Derive an expression for critical radius of insulation for cylinder.
 - (b) Derive an expression for thermal resistance for spherical wall.
 - (c) What do you understand by contact resistance?
 - (d) Derive general heat conduction equation in Cartesian coordinate system.

TME505/VEQ-14954

- (e) A plane wall having a uniform energy generation per unit volume is exposed to a fluid. Assuming one-dimensional heat conduction, derive an expression for temperature distribution within the wall.
- (f) What do you understand by the Heat Electrical analogy ?
 With the help of an example of walls in series explain its importance.
- 2. Attempt any two parts of the following : (10×2=20)
 - (a) Consider two long, very long rods (A and B) of the same diameter but different materials. One end of each rod is attached to a base surface at 100°C, and the rods are exposed to the ambient air at 20°C. By traversing the length of each rod with a thermocouple, it was observed that the temperatures of the rods were equal at the positions $X_A = 0.15$ m (for rod A) and $X_B = 0.075$ m (for rod B), where X is measured from the base surface. If the thermal conductivity of rod A is known to be $k_A = 70$ W/m.K, determine the value of k_B for rod B.
 - (b) Derive an expression for time constant of temperature measuring device. Discuss the effect of various parameters on the time constant.
 - (c) Derive an expression for heat transfer rate from a fin with insulated tip. Discuss the concept of corrected length of fin.

- Answer any two parts of the following : (10×2=20)
 - (a) Explain the significance of various dimensionless numbers to natural convection. Discuss physical mechanism of free convection with the help of neat sketch.
 - (b) Air at temperature of 28°C flows with a velocity of 10m/s over a flat plate 0.5m long and 10 m wide. Find the heat transfer rate from the plate, if the plate is maintained at 300°C.

For air take : $v = 5.21 \times 10^{-4} \text{ m}^2/\text{s};$ k = 0.0364 W/m. K; Pr = 0.687

Use the following expression for local Nusselt Number $N_{uL} = 0.332 \text{ Re}_x^{1/2} \text{ Pr}^{1/3}.$

(c) Oil at 150°C flows slowly through a long, thin-walled pipe of 30-mm inner diameter. The pipe is suspended in a room for which the air temperature is 20°C and the convection coefficient at the outer tube surface is 11 W/m². K. Estimate the heat loss per unit length of tube. Assume fully developed flow and negligible thermal resistance of tube wall.

For unused engine oil at 423 K : k = 0.133 W/m. K

Answer any two parts of the following : $(10 \times 2=20)$

(a) What do you understand by the self radiation rule, summation rule and reciprocity rule ? Prove any two of them.

3

What do you understand by the following?

- Emissive power of a surface
- (ii) Colored Surface
- (iii) Kirchoff's Law.
- (c) Consider two large, diffuse gray, parallel surfaces separated by a small distance. If the surface emissivities are 0.8, what emissivity should a thin radiation shield (placed between the surfaces) have to reduce the radiation heat transfer rate between the surfaces to 10% of the original ?

5. Answer any two parts of the following : (10×2=20)

(a) Saturated steam at 373 K condenses in a double pipe heat exchanger with a surface area of 0.5 m² and an overall heat transfer coefficient of 2000 W/m². K. Water enters at 0.5 kg/s and 288 K. Determine the outlet temperature of the water and the rate of steam condensation (Latent heat = 2257 kJ/kg)

For Double pipe heat exchanger

 $\varepsilon = 1 - \exp(-NTU) \qquad ; \qquad \text{for } C_{\min}/C_{\max} = 0$ $\varepsilon = NTU/(1 + NTU) \qquad ; \qquad \text{for } C_{\min}/C_{\max} = 1$

- (b) Derive an expression for molar diffusion rate for steady state equimolar counter diffusion.
- (c) Discuss various modes of Pool boiling with the help of Pool boiling curve. List different regimes of forced convective boiling.

TME505/VEQ-14954