Printed Pages-2

ECS504

PAPER	ID : 2167 Roll No.
	B. Tech.
SI-SY	(SEM. V) THEORY EXAMINATION 2011-12
	COMPUTER GRAPHICS
ïme : 2	Hours Total Marks : 50
lote :- A	Attempt all questions. Attempt any two parts of each question.
. (a)	Write advantages of raster scan display over random scan
	display.
(b)	Write Bresenham's algorithm of line and explain.
(c)	Write mid-point circle algorithm and predict the pixels in
	any octant of circle for radius = 10 pixels with its centre at
	origin. (6×2=12)
. (a)	Show that the uniform scaling and rotation make
	commutative pairs but in general scaling and rotation are
	not commutative.
(b)	Reflect the polygon $(-1, 0)$, $(0, -2)$, $(1, 0)$ and $(0, 2)$ about
	the line $Y = 2$ by using transformation matrices.
(c)	Write any one line clipping algorithm. $(6 \times 2 = 12)$
CS504/K	IH-26384 [Turn Over
	70

- 3. (a) Derive perspective projection transformation matrix.
 - (b) Write rotation matrices about x-axis, y-axis and z-axis.Prove that for any rotation matrix (R) :

 $\mathbf{R}^{-1}(\boldsymbol{\theta}) = \mathbf{R}(-\boldsymbol{\theta}) = \mathbf{R}^{\mathrm{T}}(\boldsymbol{\theta})$

- (c) Write 3-D line clipping algorithm of Cohen-Sutherland region code method. $(6 \times 2=12)$
- (a) Write the properties of B-Spline Curves. Also write advantages of B-Spline Curves over Bezier Curves.
 - (b) Set up the equation of Bezier Curve and roughly trace it for three control points (1,1) (2, 2) and (3, 1).
 - (c) Explain specular reflection and phong model. $(7 \times 2=14)$

ECS504/KIH-26384

19975