(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 2168 Roll No.

\square

B. Tech.

(SEM. V) THEORY EXAMINATION 2011-12

GRAPHTHEORY

Time : 2 Hours
Total Marks : 50
Note :- (i) Attempt all questions.
(ii) Make suitable assumptions wherever necessary.
(iii) Notions/symbols used have usual meaning.

1. Attempt any four parts of the following: $\quad(\mathbf{3} \times \mathbf{4}=\mathbf{1 2)}$
(a) Let $\mathrm{n} \geq 4$ be any even number. Show by induction that there exists a 3-regular graph G with $\mathrm{v}(\mathrm{G})=\mathrm{n}$.
(b) Find all nonisomorphic simple graphs of order 4.
(c) Define the following operations on the graphs with example :-
(i) Product
(ii) Complement
(iii) Ring sum.
(d) Let G be a disconnected graph of order 5 . What is the largest possible value for $\mathrm{e}(\mathrm{G})$? If G is a disconnected graph of order $n \geq 2$, what is the largest possible value for $e(G) ?$ Construct one such extremal graph of order n.
(e) Suppose G and G^{\prime} are two graphs having n vertices. For what values of n is it possible for G to have more components and edges than G^{\prime} ?
(f) Show that any circuit in a graph contains a cycle.
2. Attempt any two parts of the following :
(a) Show that:
(i) Any connected graph with n vertices and $n-1$ edges is a tree.
(ii) In any tree (with two or more vertices), there are at least two pendant vertices.
(b) Define the term metric and associated number of a graph. Show every tree has either one or two centers.
(c) Write the Kruskal's algorithm for finding the minimum spanning tree of a graph. Discuss its performance.
3. Attempt any two parts of the following :
(a) Define the cut sets and cut vertices of a graph. Prove that in a nonseparable graph G the set of edges incident on each vertex of G is a cut set.
(b) Using the geometric arguments prove that the Kuratowski's second graph is nonplanar.
(c) (i) Determine the number of crossings and thickness of the graph K_{5}.
(ii) Show that the thickness of the eight vertex complete graph is two, where as that of the nine vertex complete graph is three.
4. Attempt any four parts of the following :
$(3.5 \times 4=14)$
(a) Prove that the set consisting of all the cut-sets and the edge-disjoint union of cut-sets (including the null set) in a graph G is an abelian group under the ring-sum operation.
(b) Explore how the covering number of a graph G with n vertices is related to the diameter of G.
(c) What is it meant by the Basis Vectors of a graph ? Explain with an example.
(d) Show that a complete matching of V_{1} into V_{2} in a bipartite graph exists if and only if every subset of r vertices in V_{1} is collectively adjacent to \mathbf{r} or more vertices in V_{2} for all values of \mathbf{r}.
(e) Define the incidence matrix of a connected graph with n vertices and e edges and prove that rank of incidence matrix of the graph is $n-1$.
(f) Find chromatic polynomial $P(G, x)$, where G is a cyclic graph with n vertices where $n=3$ or $n=4$.
