(Following Paper ID and Roll No. to be filled in your Answer Book)

B. Tech.

(SEM. V) THEORY EXAMINATION 2011-12

INTEGRATED CIRCUITS

Time: 3 Hours Total Marks : 100

Note :- Attempt all questions. All questions carry equal marks.
Assume missing data suitably if any.

1. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) (i) What are desirable characteristics of current mirror circuits? Draw the simple BJT current mirror circuit and reduce the expression for current transfer ratio using matched transistors.
(ii) What are the advantages of Widlar current source? For the circuit shown in figure 1 , assuming high β of transistors and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ at 1 mA . Find the value of R that will result in $I_{o}=10 \mu \mathrm{~A}$.

Figure 1
EEC501/KIH-26665
1
/Turn Over
(b) Explain the role of negative feedback capacitance of $C_{C}=30 \mathrm{pf}$ at second stage of OPAMP 741. Find corresponding pole frequency of $\mathrm{II}^{\text {rd }}$ stage gain $=515$, output resistance of input stage is $67 \mathrm{M} \Omega$ and input resistance of $I^{\text {nd }}$ stage is $4 \mathrm{M} \Omega$.
(c) Figure 2 shows output stage OPA.MP 741. Find output voltage swing. Also explain the role of short circuit protection circuit.

2. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) For the circuit shown in figure 4, find $\frac{V_{0}}{V_{1}}$.

EEC501/KIH-26665
2

Design a single stage amplifier to have $\mathrm{R}_{\mathrm{i}}=1 \mathrm{M} \Omega$ and voltage gain hundred. N_{o} Resistance should have value greater than $50 \mathrm{M} \Omega$.
(b) Draw the circuit diagram of an inductance simulation circuit and find the expression for equivalent inductance.
(c) Draw the circuit diagram of state variable filter and find the transfer function of Low pass, High pass and Band pass filter.
3. Attempt any two parts of the following:
(a) Find truth table and CMOS realization of following gates:
(i) AND-OR-INVERT $(\mathrm{AOI}) \Rightarrow \mathrm{F}=\overline{\mathrm{AB}+\mathrm{CD}}$
(ii) OR-AND-INVERT $(\mathrm{OAI}) \Rightarrow \mathrm{F}=\overline{(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})}$
(b) Give two different CMOS realization of the exclusive-OR function $Y=A \bar{B}+\bar{A} B$ in which the PDN and PUN are dual networks.
(c) Give CMOS implementation of a clocked SR flip-flop and explain its working.
4. Answer any two parts of the following: $\quad(2 \times 10=20)$
(a) Draw the circuit diagram of triangular waveform generator using OPAMP and also find the expression for frequency of the Triangular waveform.
(b) Draw the circuit diagram of Anti-log amplifier and find the expression for output voltage.
(c) Draw the circuit diagram of Astable multi ibrator using OPAMP and find the expression for its time period. Show that $f_{0}=\frac{1}{2 R C}$ if $R_{1}=1.16 R_{2}$.
5. Attempt any two parts of the following:
(a) Define Lock-in-Range, Capture Range and Pull-in-Time as related to PLL. Draw the circuit diagram of Frequency multiplier using PLL and explain its working.
(b) Draw the functional block diagram of IC 555 and explain its working. Draw the circuit diagram of a monostable multivibrator using 555 and find expression for quasi state period.
(c) Write short note on analog to digital converter.

