Printed Pages—7	EE	C501	
(Following Paper ID and	Roll No. to be filled in your Answer	Book	
PAPER ID : 2117 R	Roll No.		
	B.Tech.		
(SEM. V) ODD SEMES	IER THEORY EXAMINATION 20 GRATED CIRCUITS	12-13	
Time : 3 Hours	Total Marks	s · 100	
Note : Attempt all que Assume missing	estions. All questions carry equal n data suitably if any.	narks.	
 Attempt any two pa Two circuits for 10 V power s determine the 1 mA (Neglect 	arts of the following : $(2 \times 10^{10} \text{ generating constant current of } 10 \mu\text{A}$ supply. Assuming all matched transi- value of resistances. Take $V_{BE} = 0.7$ t effect of finite β).)=20) A from istors, 7 V at	
	Φ V _{cc} = 10 V		
R	$I_{o} = 10 \ \mu A$		
E ₄₀ = 1 ₄₀ = 2 63 K = −−− β ₃ (− 200, β, = 2) F = −−− V = 105 V			, Å
R	$ \begin{array}{c} \textbf{(I)} \\ \Psi_{cc} = 10 \text{ V} \\ \Psi_{cc} = 10 \text{ V} \\ \Psi_{cc} = 10 \mu \text{ A} \end{array} $		
	$ \underbrace{=}^{I} (II) \underbrace{=}^{I} R_{2} $		
Newsel	Figure 1		
in Figure 1.	rcuits and compare their features as sh	IOWN	
EEC501/DLT-44160	1 <i>[Turn</i>	Over	

(b) Draw the circuit diagram of a Wilson current source and find the expression for current transfer ratio. For the circuit shown in Figure 2 below, find current transfer ratio.

Second stage of a typical OP-AMP is shown in following (c) Figure 3, find input resistance (R_{1_2}) , output resistance (R_{0_2})

EEC501/DLT-44160

Attempt any two parts of the following :

2.

(2×10=20)

(a) For the circuit shown in Figure 4 show that common mode gain is minimum when $R_1 = R_3$ and $R_2 = R_4$.

Figure 4

(b) Find differential gain of the circuit shown in Figure 5.

EEC501/DLT-44160

3

[Turn Over

(c) Compare and contrast active filters and passive filters. Draw the circuit of IInd order low pass filters and find the expression for its cut-off frequency.

Design a second order low pass Butterworth filter to have cut-off frequency 1 kHz.

- 3. Attempt any two parts of the following : (2×10=20)
 - (a) Discuss the features of CMOS circuit. Discuss the effect of Fan-in and Fan-out on propagation delay in CMOS digital logic circuit. Find the expression of Y in terms of A and B and hence the truth table for the circuit shown in Figure 6.

Figure 6

(b) Design CMOS logic circuit to realize the Boolean function given by :

4

$$Y = ABC + \overline{A} \overline{B} \overline{C}$$
.

EEC501/DLT-44160

and a contract to

- (c) Implement the following digital CMOS logic circuits :
 - (i) S-R flip-flop
 - (ii) D Latch.
- 4. Attempt any two parts of the following :

 $(2 \times 10 = 20)$

- (a) Draw the circuit diagram of full wave precision rectifier and find expression for output voltage for both positive and negative half cycle of input sinusoidal waveform.
- (b) For monostable multivibrator circuit shown in Figure 7 the circuit can be triggered by applying a positive input pulse of amplitude greater than V_{ref}. Find the expression for T quasi-stable time period.

EEC501/DLT-44160

5

[Turn Over

(c) . For the circuit shown in Figure 8, show that output voltage is proportional to $ln v_i$ (Assuming matched transistors).

Figure 8

5. Attempt any two parts of the following :

(2×10=20)

(a) What are different mode of operation of IC 555 ? Draw the circuit diagram of a delay circuit using 555. What is maximum delay that can be provided with 555 with a capacitor of 1000 μ F ?

6

EEC501/DLT-44160

- (b) Draw the functional block diagram of PLL IC. Explain its working and deduce the expression for maximum frequency range of signal that can be locked.
- (c) Draw the circuit diagram of weighted resistor digital to analog converter and find the expression of its output analog voltage.

7

EEC501/DLT-44160

1

8925