(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID: 2110 Roll No.

B.Tech.

(SEM. V) ODD SEMESTER THEORY EXAMINATION 2012-13

FUNDAMENTALS OF E.M. THEORY

Time: 2 Hours

Total Marks: 50

Note: (1) Attempt all the questions.

(2) All questions carry equal marks.

- 1. Attempt any TWO parts of the following: (5×2=10)
 - (a) Express B = (10/r) $a_r + r \cos \theta$ a_θ in Cartesian and cylindrical co-ordinates.
 - (b) Given that $D = (5r^2/4) a_r$ in spherical co-ordinate. Find the volume enclosed between r = 1 and r = 2.
 - (c) Evaluate div (curl A) if A = $(\sin \phi/r^2) a_r (\cos \phi/r^2) a_\phi$.
- 2. Attempt any TWO parts of the following: (5×2=10)
 - (a) Determine charge density if electric flux density D = $r \sin \phi a_r + 2 r \cos \phi a_\phi + 3z^2 a_z$.
 - (b) An electric potential on a plane is described by $V = 100 \text{ r}^{-3}$ (where r is the distance from the source). Calculate the electric field at the point (0.5, 60°, 45°).
 - (c) A copper wire carries a conduction current of 1 amp at 60 Hz. What is the displacement current in the wire? Assume $\mu = \mu_0$, $\epsilon' = \epsilon'_0$ and $\sigma = 5.8 \times 10^7$ v/m.

EEC508/DLT-44164

[Turn Over

Med

- 3. Attempt any **TWO** parts of the following: $(5\times2=10)$
 - (a) Prove that the magnetic field due to an infinite conductor carrying current I at a distance r is $H = I/(2\Pi r)$.
 - (b) Find α and β for the propagation of wave in good conductor, also show that angle of characteristic impedance is always 45° for good conductors.
 - (c) A uniform plane wave propagating in good conductor. If the magnetic field intensity is given by H = $0.1e^{-15z}$ cos($2\pi \times 10^8 t 15z$) a_x A/m, determine the conductivity and corresponding component of E field. Also calculate the average power loss in a block of unit area and thickness t.
 - Attempt any TWO parts of the following: $(5\times2=10)$
 - (a) Calculate E at P(1, 1, 1) in free space caused by four identical 3-nC point charges located at $p_1 = (1, 1, 0)$, $p_2 = (-1, 1, 0)$, $p_3 = (-1, -1, 0)$ and $p_4 = (1, -1, 0)$.
 - (b) Find the magnetic field intensity at (1.5, 2, 3) due to a conductor carrying current of 24 A along z-axis extending from z = 0 to z = 6.
 - (c) Define the following:
 - (i) Reflection co-efficient
 - (ii) Wave impedance
 - (iii) VSWR.
- EEC508/DLT-44164

- 5. Attempt any TWO parts of the following:
 - (a) A uniform plane wave propagating in a medium has $E = 2e^{-az} \sin{(10^8t \beta z)} \text{ ay v/m}.$ If a medium is characterized $\epsilon_r = 1$, $\mu_r = 20$ and $\sigma = 3$ s/m, determine α , β and H.
 - (b) Derive an expression of magnetic field intensity due infinitely long transmission line using Ampere's Circuit of Law.
 - (c) Derive the expression of four Maxwell's equations for static and time varying EM fields, also indicate the law associated with them. Derive an expression for continuity equation.