Printed Pages-4

EEC509

(Following Paper ID	and Roll No	o. to be	filled i	n vou	r Ans	Werl	Rook	Ţ
PAPER ID : 2115	Roll No.	1	TT	TT		TT	JUUK,	1
								1

B.Tech.

(SEM. V) ODD SEMESTER THEORY EXAMINATION 2013-14

ANALOG INTEGRATED ELECTRONICS

Time : 3 Hours

Total Marks : 100

Note :- Attempt all questions.

- 1. Answer any four parts of the following : $(5 \times 4 = 20)$
 - (a) Briefly explain the need for compensating networks in op-amps.
 - (b) Explain the effect of negative feedback on frequency response.
 - (c) The 741 IC is connected as a non-inverting amplifier. What maximum gain can be used that will keep the amplifiers's response flat to 10 kHz?
 - (d) How does the high frequency model of an op-amp differ from the equivalent circuit of an op-amp ?
 - (e) Why are low closed loop gains avoided with uncompensated op-amps? Explain.

EEC509/DNG-51949

[Turn Over

(f) What is the frequency response ? Define "break frequency" and "bandwidth".

- 2. Answer any two parts of the following : $(10 \times 2 = 20)$
 - (a) Explain the working of practical Integrator. Also derive and explain its frequency response. Design a practical integrator circuit with a d.c. gain of 10, to integrate a square wave of 10 kHz.
 - (b) Draw and explain the commonly used three op-amp instrumentation amplifier. Derive expression for its gain. Also design the instrumentation amplifier to have a variable differential gain in the range 5-200. Use a 50 k Ω potentiometer.
 - (c) (i) Draw the V-I converter and derive output voltage equation for grounded load.
 - (ii) Explain the difference between inverting and differential summing amplifiers.
- 3. Answer any four parts of the following: $(5 \times 4 = 20)$
 - (a) Design a low pass filter using Op-Amp at a cut-off frequency of 1 kHz with pass gain of 2. And plot the frequency response of this low pass filter.

2

EEC509/DNG-51949

-

- (b) Design a multiple feedback narrow band pass filter with $f_c = 1$ kHz, Q = 3 and A = 10.
- (c) Draw the circuit diagram of a All Pass Filter and show that phase is given by $\Phi = -2 \tan - t 2$ fRC.
- (d) Design a Wide Band Pass Filter with lower cutoff frequency 200 Hz and higher cutoff frequency 1 kHz and a pass band gain = 4.
- (e) Explain the operation of a 3-bit R-2R type DAC.
- (f) Discuss the successive approximation type A/D converter.
- 4. Answer any two parts of the following : $(10 \times 2 = 20)$
 - (a) Using op-amp design triangular wave generator and square wave generator.
 - (b) What are the advantages of the adjustable voltage regulator over the fixed voltage regulator? Describe the working of adjustable voltage regulator.

3

- (c) Write short notes on the following :
 - (i) Precision rectifiers
 - (ii) Schmitt trigger.

EEC509/DNG-51949

[Turn Over

5. Answer any two parts of the following :

- (a) Explain the basic principles of a PLL with suitable block diagram and mention its applications in detail.
- (b) List the characteristics of an Operational Transconductance Amplifier (OTA). Draw the inverting and non-inverting amplifier using OTA.
- (c) Write short notes on the following :
 - (i) Log and Antilog amplifiers
 - (ii) Analog Multipliers.

EEC509/DNG-51949

5475