
(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 100505

Roll No. \square

B. Tech.

(SEM. V) (ODD SEM.) THEORY
EXAMINATION, 2014-15
design of concrete structure - I

Time : 3 Hours]
[Total Marks : 100
Note : (1) Attempt all questions. All questions carry equal marks.
(2) Any data if missing may be assumed suitably. (3) Use of IS 456-2000 is allowed.

1 Attempt any four parts of the following : $\mathbf{5 \times 4 = \mathbf { 2 0 }}$
(a) What is meant by Segregation and Bleeding of concrete ? Under what circumstances, they take place.
(b) Explain the following terms
(i) Balanced section
(ii) Under-reinforced section and
(iii) Over-reinforced section
(c) What are various design philosophies? Explain any one of these in detail.

100505]
(d) Explain why is the concrete cover to reinforcement required ?
(e) Under what circumstances a doubly reinforced beam is designed ?
(f) What is meant by limit state ? Discuss the different limit state to be considered in reinforced concrete design.

2 Attempt any two parts of the following : $\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0}$
(a) Design the section of a doubly reinforced beam to resist a bending moment of $185 \mathrm{kN}-\mathrm{m}$. The section of the beam is restricted to $350 \mathrm{~mm} \times 700 \mathrm{~mm}$. Assume 50 mm effective cover. Use M_{20} grade of concrete and Fe_{415} steel.
(b) Analyse a T-beam for the following data :
$b_{f}=1500 \mathrm{~mm}, \quad D_{f}=100 \mathrm{~mm}, D=600 \mathrm{~mm}$,
$b_{w}=300 \mathrm{~mm}, \quad f_{c k}=150 \mathrm{~N} / \mathrm{mm}^{2}$,
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}, A_{s t}=8$ bars of 20 mm dia with effective cover 65 mm .
(c) A cantilever beam project 2.5 m beyond the fixed end and carries a superimposed load of $10 \mathrm{kN} / \mathrm{m}$. Design the cantilever using M_{20} grade concrete and Fe_{415} steel. Take width of support $=350 \mathrm{~mm}$.

Attempt any two parts of the following : $\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0}$
(a) Determine the shear stress in a $250 \mathrm{~mm} \times 400 \mathrm{~mm}$ effective depth rectangular section. If the shear force is 10 kN and torsional moment is $2 \mathrm{kN}-\mathrm{m}$ at factored loads. Assume 0.25% tension steel at the given section. State whether torsional reinforcement is required or not. Use M_{20} grade concrete and Fe_{415} steel.
(b) A simply supported R.C. beam of size $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ effective depth is reinforced with 4 bars of 16 mm dia. Determine the anchorage length of the bar at the simply supported end, if it is subjected to a factored shear force of 350 kN at the centre of 300 mm wide masonary support. Use M_{20} grade of concrete and Fe_{415} steel.
(c) A simply supported R.C. Beam section $250 \mathrm{~mm} \times 500 \mathrm{~mm}$ effective depth is reinforced with 4 bars of 22 mm dia as tension steel. If the beam is subjected to a factored shear of 65 kN at the support. Find the nominal shear stress at the support and design the shear reinforcement. Use M_{20} grade concrete and Fe_{415} steel.

4 Attempt any two parts of the following : $\mathbf{1 0 \times 2 = 2 0}$
(a) What do you understand by the term "Limit state of serviceability" ? Explain the method of calculating long term deflection.
100505] 3
[Contd...
(b) Design a R.C. slab for a room measuring $6 \mathrm{~m} \times 7 \mathrm{~m}$ size. The slab is simply supported on all the four edges, with corners held down and carries a super imposed load of $3500 \mathrm{~N} / \mathrm{m}^{2}$, inclusive of floor finish etc. Use M_{20} grade concrete and Fe_{415} steel.
(c) Design a simply supported roof slab for a room $7.5 \mathrm{~m} \times 3.5 \mathrm{~m}$ clear in size. The slab is carrying an imposed load of $5 \mathrm{kN} / \mathrm{m}^{2}$. Use M_{20} grade

- concrete and Fe_{415} steel.

5 Attempt any two parts of the following : $\mathbf{1 0 \times 2}=\mathbf{2 0}$
(a) What are interaction curves ? Explain the failure of a column subjected to compression and uniaxial bending with the help of interaction curve.
(b) Design a reinforced concrete square column of 500 mm side to carry an ultimate load of 2000 kN at an eccentricity of 180 mm . Use M_{20} grade concrete and Fe_{415} steel.
(c) A circular R.C.C. column of 450 mm dia is reinforced with 8 bars of 18 mm dia and are tied together with helical reinforcement of 8 mm dia at a pitch of $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. Find load carrying capacity of the column, when effective length of column is 4.5 m . Take clear cover to helical reinforcement 50 mm . Use M_{20} grade concrete and Fe_{415} steel.

